Skip to main content

Fast Solver for Advection Dominated Diffusion Using Residual Minimization and Neural Networks

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Advection-dominated diffusion is a challenging computational problem that requires special stabilization efforts. Unfortunately, the numerical solution obtained with the commonly used Galerkin method delivers unexpected oscillation resulting in an inaccurate numerical solution. The theoretical background resulting from the famous inf-sup condition tells us that the finite-dimensional test space employed by the Galerkin method does not allow us to reach the supremum necessary for problem stability. We enlarge the test space to overcome this problem. We do it for a fixed trial space. The method that allows us to do so is the residual minimization method. This method, however, requires the solution to a much larger system of linear equations than the standard Galerkin method. We represent the larger test space by its set of optimal test functions, forming a basis of the same dimension as the trial space in the Galerkin method. The resulting Petrov-Galerkin method stabilizes our challenging advection-dominated problem. We train the optimal test functions offline with the neural network to speed up the computations. We also observe that the optimal test functions, usually global, can be approximated with local support functions, resulting in a low computational cost for the solver and a stable numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berg, J., Nystrom, K.: Data-driven discovery of PDEs in complex datasets. J. Comput. Phys. 384, 239–252 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brevis, I., Muga, I., van der Zee, K.: Data-driven finite elements methods: machine learning acceleration of goal-oriented computations (2020). Arxiv arXiv:2003.04485:1–24

  4. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons (2009)

    Google Scholar 

  5. Demkowicz, L.: 2D \(hp\)-adaptive finite element package (2Dhp90) version 2.0. Ticam Report, 2:06 (2002)

    Google Scholar 

  6. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic \(hp\)-adaptivity. J. Sci. Comput. 17(1–4), 117–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hackbusch, W., Grasedyck, L., Börm, S.: An introduction to hierarchical matrices. Math. Bohem. 127, 229–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Higham, C.F.: Deep learning: an introduction for applied mathematicians. SIAM Rev. 61(4), 860–891 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hughes, T.J.R., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: vi. convergence analysis of the generalized supg formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63(1), 97–112 (1987)

    Google Scholar 

  11. Łoś, M., Deng, Q., Muga, I., Paszyński, M., Calo., V.: Isogeometric residual minimization method (iGRM) with direction splitting preconditoner for stationary advection-diffusion problems. Comput. Methods Appl. Mech. Eng. (in press.) (2020). arXiv:1906.06727

  12. Łoś, M., Munoz-Matute, J., Muga, I., Paszyński, M.: Isogeometric residual minimization method (iGRM) with direction splitting for non-stationary advection-diffusion problems. Comput. Math. Appl. 79(2), 213–229 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Łoś, M., Munoz-Matute, J., Muga, I., Paszyński, M.: Isogeometric residual minimization for time-dependent stokes and navier-stokes problems. Comput. Math. Appl. (in press.) (2020). arXiv:2001.00178

  14. Łoś, M., Rojas, S., Paszyński, M., Muga, I., Calo, V.: Discontinuous galerkin based isogeometric residual minimization for the stokes problem (DGIRM). In: Invited to the Special Issue of Journal of Computational Science on 20th Anniversary of ICCS Conference (2020)

    Google Scholar 

  15. Opschoor, J.A.A., Petersen, P.C., Schwab, C.: Deep ReLU networks and high-order finite element methods. Anal. Appl. 18(5), 715–770 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Paszyński, M., Służalec, T.: Petrov-galerkin formulation equivallent to the residual minimization method for finding an optimal test functions. ECCOMAS Congress, 5–9 June 2022, Oslo, Norway (2022)

    Google Scholar 

  17. Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer (2011). https://doi.org/10.1007/978-3-642-22980-0

  18. Schmitz, P., Ying, L.: A fast nested dissection solver for cartesian 3D elliptic problems using hierarchical matrices. J. Comput. Phys., 258:227–245 (2014)

    Google Scholar 

  19. Służalec, T., Dobija, M., Paszyńska, A., Muga, I., Paszyński, M.: Automatic stabilization of finite-element simulations using neural networks and hierarchical matrices (2022). arxiv.org/abs/2212.12695

  20. Tsihrintzis, G., Sotiropoulos, D.N., Jain, L.C.: Machine learning paradigms: advances in data analytics. Springer (2019). https://doi.org/10.1007/978-3-319-94030-4

  21. Jinchao, X.: Finite neuron method and convergence analysis. Commun. Comput. Phys. 28, 1707–1745 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The Authors are thankful for support from the funds assigned to AGH University of Science and Technology by the Polish Ministry of Science and Higher Education. Research project partly supported by program “Excellence initiative – research university” for the AGH University of Science and Technology.

The publication has been supported by a grant from the Faculty of Management and Social Communication under the Strategic Programme Excellence Initiative at Jagiellonian University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Służalec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Służalec, T., Paszyński, M. (2023). Fast Solver for Advection Dominated Diffusion Using Residual Minimization and Neural Networks. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics