Skip to main content

Bioremediation: An Alternative Tool for Restoration of Urban Agroecosystem Contaminated with Harmful Xenobiotics

  • Chapter
  • First Online:
Xenobiotics in Urban Ecosystems
  • 120 Accesses

Abstract

Pollution of agroecosystem has become a serious challenge due to incessant use of agrochemicals and instantaneous increase in industrialization and urbanization. Urban agriculture, which offers additional and sustainable options to generate surplus food to fortify food security, has also been affected by the problem of pollution. Anthropogenic activities have introduced undesirable xenobiotics, specifically heavy metal(oid)s and persistent organic substances, in the urban ecosystem. Presence of such toxic and objectionable compounds in plant culture media, particularly soil, above their threshold limits, influences urban agriculture by reducing soil productivity and increasing risk to plants, animals, and humans. Soil remediation is an effective approach for the reclamation of contaminated urban soils that replenishes their structure and services. Conventional methods, viz., electrokinetics, soil washing, vitrification, and landfill dumping, are commonly adopted physicochemical techniques for remediation. However, these approaches have certain drawbacks like use of highly complex methods, are expensive, require high energy and chemical inputs, accelerate soil nutrient loss, and generate secondary pollutants, which affect the urban environment. Contrarily, sustainable approaches particularly use of biological agents are economical, viable, effective, and safe technique for soil remediation. Microorganisms hold enormous capacity for in situ as well as ex situ soil reclamation. Thus, unraveling the untapped potential of diverse bioagents and coupling their potential with other remediation measures could aid in development of efficacious, environmentally safe, and economical technologies for soil productivity restoration. The present chapter discusses the sources and health impact of xenobiotic contaminants on soil, microorganisms, plants, and humans; problems related with the use of conventional methods for decontamination of soil explore the potential of sustainable biological approach to reduce harmful effects of xenobiotics on urban agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation-a review. Open J Environ Biol 2(1):038–046

    Article  Google Scholar 

  • Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN (2020) Plant-assisted remediation of hydrocarbons in water and soil: application, mechanisms, challenges and opportunities. Chemosphere 247:125932

    Article  CAS  Google Scholar 

  • Aboubakar A, Douaik A, Mewouo YCM, Madong RCBA, Dahchour A, El Hajjaji S (2021) Determination of background values and assessment of pollution and ecological risk of heavy metals in urban agricultural soils of Yaoundé. Cameroon J Soils Sediments 21(3):1437–1454

    Article  CAS  Google Scholar 

  • Acevedo F, Pizzul L, González ME, Cea M, Gianfreda L, Diez MC (2010) Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere 80(3):271–278

    Article  CAS  Google Scholar 

  • Adhikari T, Manna MC, Singh MV, Wanjari RH (2004) Bioremediation measure to minimize heavy metals accumulation in soils and crops irrigated with city effluent. J Food Agric Environ 2:266–270

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2011) Effect of pesticides on plant growth promoting traits of greengram-symbiont, Bradyrhizobium sp. strain MRM6. Bull Environ Contam Toxicol 86(4):384–388

    Article  CAS  Google Scholar 

  • Anerao P, Kaware R, Khedikar AK, Kumar M, Singh L (2022) Phytoremediation of persistent organic pollutants: concept challenges and perspectives. In: Kumar V, Shah MP, Shahi SK (eds) Phytoremediation Technology for the Removal of heavy metals and other contaminants from soil and water. Elsevier, Netherland, pp 375–404

    Chapter  Google Scholar 

  • Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24(5):4322–4336

    Article  Google Scholar 

  • Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C (2020) Microalgal metallothioneins and phytochelatins and their potential use in bioremediation. Front Microbiol 11:517

    Article  Google Scholar 

  • Bellino A, Lofrano G, Carotenuto M, Libralato G, Baldantoni D (2018) Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.). Ecotoxicol Environ Saf 148:135–141

    Article  CAS  Google Scholar 

  • Belviso C (2020) Zeolite for potential toxic metal uptake from contaminated soil: a brief review. PRO 8(7):820

    CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2016) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644

    Article  CAS  Google Scholar 

  • Bibi F, Ilyas N (2020) Effect of agricultural pollution on crops. In: Hasanuzzaman M (ed) Agronomic crops. Springer, Singapore, pp 593–601

    Chapter  Google Scholar 

  • Borowik A, Wyszkowska J, Kucharski J, Baćmaga M, Tomkiel M (2017) Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. Environ Sci Pollut Res 24(2):1910–1925

    Article  CAS  Google Scholar 

  • Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediation 20(4):384–397

    Article  CAS  Google Scholar 

  • Buscaroli E, Braschi I, Cirillo C, Fargue-Lelièvre A, Modarelli GC, Pennisi G, Righini I, Specht K, Orsini F (2021) Reviewing chemical and biological risks in urban agriculture: a comprehensive framework for a food safety assessment of city region food systems. Food Control 126:108085

    Article  CAS  Google Scholar 

  • Carballo M, Rodríguez A, De la Torre A (2022) Phytotoxic effects of antibiotics on terrestrial crop plants and wild plants: a systematic review. Arch Environ Contam Toxicol 82:48–61

    Article  CAS  Google Scholar 

  • Carré F, Caudeville J, Bonnard R, Bert V, Boucard P, Ramel M (2017) Soil contamination and human health: a major challenge for global soil security. In: Field DJ, Morgan CLS, McBratney AB (eds) Global soil security. Springer, Cham, pp 275–295

    Chapter  Google Scholar 

  • Carvalho IT, Santos L (2016) Antibiotics in the aquatic environments: a review of the European scenario. Environ Int 94:736–757

    Article  Google Scholar 

  • Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegradation 119:419–428

    Article  CAS  Google Scholar 

  • Chakraborty A, Chakrabarti K, Chakraborty A, Ghosh S (2011) Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol Fertil Soils 47(2):227–233

    Article  Google Scholar 

  • Chakraborty S, Mukherjee S, Roychoudhury S, Siddique S, Lahiri T, Ray MR (2009) Chronic exposures to cholinesterase-inhibiting pesticides adversely affect respiratory health of agricultural workers in India. J Occup Health 51(6):488–497

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. https://doi.org/10.1155/2014/752708

  • Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2013) Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol 64:7–14

    Article  Google Scholar 

  • Copaciu F, Opriş O, Coman V, Ristoiu D, Niinemets Ü, Copolovici L (2013) Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water Air Soil Pollut 224(3):1–11

    Article  CAS  Google Scholar 

  • Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review Environ Technol Innov 8:309–326

    Article  Google Scholar 

  • D’Souza R, Varun M, Lakhani A, Singla V, Paul MS (2015) PAH contamination of urban soils and phytoremediation. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants. Cham, Springer, pp 219–241

    Chapter  Google Scholar 

  • Dhaliwal SS, Singh J, Taneja PK, Mandal A (2020) Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res 27(2):1319–1333

    Article  Google Scholar 

  • Dhungana SK, Kim ID, Kwak HS, Shin DH (2016) Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr.]. Pestic Biochem Physiol 130:39–43

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  • Dotaniya ML, Rajendiran S, Meena VD, Saha JK, Coumar MV, Kundu S, Patra AK (2017) Influence of chromium contamination on carbon mineralization and enzymatic activities in Vertisol. Agric Res 6(1):91–96

    Article  CAS  Google Scholar 

  • Dubey SK, Yadav R, Chaturvedi RK, Yadav RK, Sharma VK, Minhas PS (2010) Contamination of ground water as a consequence of land disposal of dye waste mixed sewage effluents: a case study of Panipat district of Haryana. India Bull Environ Contam Toxicol 85(3):295–300

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36

    Article  Google Scholar 

  • Fabietti G, Biasioli M, Barberis R, Ajmone-Marsan F (2010) Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont. Italy J Soils Sediments 10(2):290–300

    Article  CAS  Google Scholar 

  • Fenyvesi É, Gruiz K, Morillo E, Villaverde J (2019) Traditional and innovative methods for physical and chemical remediation of soil contaminated with organic contaminants. In: Gruiz K, Meggyes T, Fenyvesi E (eds) Engineering tools for environmental risk management: 4-risk reduction technologies and case studies. CRC Press, London, pp 285–362

    Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152(1):128–139

    Article  CAS  Google Scholar 

  • Ferreira AJD, Guilherme RIMM, Ferreira CSS (2018) Urban agriculture, a tool towards more resilient urban communities? Curr Opin Environ Sci Health 5:93–97

    Article  Google Scholar 

  • Forns J, Lertxundi N, Aranbarri A, Murcia M, Gascon M, Martinez D, Grellier J, Lertxundi A, Julvez J, Fano E, Goñi F (2012) Prenatal exposure to organochlorine compounds and neuropsychological development up to two years of life. Environ Int 45:72–77

    Article  CAS  Google Scholar 

  • Francis AJ, Nancharaiah YV (2015) In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. In: Velzen LV (ed) Environmental remediation and restoration of contaminated nuclear and norm sites. Woodhead Publishing, Cambridge, pp 185–236

    Chapter  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  Google Scholar 

  • Gaggero E, Malandrino M, Fabbri D, Bordiglia G, Fusconi A, Mucciarelli M, Inaudi P, Calza P (2020) Uptake of potentially toxic elements by four plant species suitable for phytoremediation of Turin urban soils. Appl Sci 10(11):3948

    Article  CAS  Google Scholar 

  • Gao Y, Zhou P, Mao L, Zhi YE, Shi WJ (2010) Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: modified ecological dose–response model and PCR-RAPD. Environ Earth Sci 60(3):603–612

    Article  CAS  Google Scholar 

  • Ge J, Cheng J, Li Y, Li QX, Yu X (2020) Effects of dibutyl phthalate contamination on physiology, phytohormone homeostasis, rhizospheric and endophytic bacterial communities of Brassica rapa var. chinensis. Environ Res 189:109953

    Article  CAS  Google Scholar 

  • Guo H, Yao J, Cai M, Qian Y, Guo Y, Richnow HH, Blake RE, Doni S, Ceccanti B (2012) Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87(11):1273–1280

    Article  CAS  Google Scholar 

  • Gupta D, Fatima A, Singh P, Singh S, Prasad S (2019) Repercussion of soil pollution on plants. Regul Rivers Res Manag 6:89–98

    Google Scholar 

  • He L, Gielen G, Bolan NS, Zhang X, Qin H, Huang H, Wang H (2015a) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35(2):519–534

    Article  CAS  Google Scholar 

  • He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ (2015b) Heavy metal contamination of soils: sources, indicators and assessment. J Environ Indic 9:17–18

    Google Scholar 

  • Jaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455

    Article  CAS  Google Scholar 

  • Jacobs A, Drouet T, Sterckeman T, Noret N (2017) Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials. Environ Sci Pollut Res 24(9):8176–8188

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60

    Article  Google Scholar 

  • Jaiswal S, Shukla P (2020) Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol 11:808

    Article  Google Scholar 

  • Jariyal M, Jindal V, Mandal K, Gupta VK, Singh B (2018) Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia. Ecotoxicol Environ Saf 159:310–316

    Article  CAS  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    Article  CAS  Google Scholar 

  • Jayaramaiah RH, Egidi E, Macdonald CA, Wang JT, Jeffries TC, Megharaj M, Singh BK (2022) Soil initial bacterial diversity and nutrient availability determine the rate of xenobiotic biodegradation. Microb Biotechnol 15(1):318–336

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere 207:255–266

    Article  CAS  Google Scholar 

  • Juwarkar AA, Yadav SK (2010) Bioaccumulation and biotransformation of heavy metals. In: Fulekar MH (ed) Bioremediation technology. Springer, Dordrecht, pp 266–284

    Chapter  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    Article  CAS  Google Scholar 

  • Kapahi M, Sachdeva S (2019) Bioremediation options for heavy metal pollution. J Health Pollut 9(24):191203

    Article  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Khan MI, Cheema SA, Anum S, Niazi NK, Azam M, Bashir S, Ashraf I, Qadri R (2020) Phytoremediation of agricultural pollutants. In: Shmaefsky B (ed) Phytoremediation: concepts and strategies in plant sciences. Cham, Springer, pp 27–81

    Chapter  Google Scholar 

  • Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S, Panneerselvam P, Chatterjee D (2020) Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health. Sci Total Environ 699:134330

    Article  CAS  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109(1):47–50

    Article  CAS  Google Scholar 

  • Kluck C, Achari G (2004) Chemical oxidation techniques for in situ remediation of hydrocarbon impacted soils. Environ Eng:1–8

    Google Scholar 

  • Koul B, Taak P (2018) Chemical methods of soil remediation. In: Koul B, Taak P (eds) Biotechnological strategies for effective remediation of polluted soils. Springer, Singapore, pp 77–84

    Chapter  Google Scholar 

  • Kumar A, Ansari MI, Srivastava S, Saxena G, Gupta K (2020) Genetic engineering to reduce toxicity and increase accumulation of toxic metals in plants. In: Misha K, Tandon PK, Srivastava S (eds) Sustainable solutions for elemental deficiency and excess in crop plants. Springer, Singapore, pp 481–501

    Chapter  Google Scholar 

  • Kumar J, Lind L, Salihovic S, van Bavel B, Ingelsson E, Lind PM (2014) Persistent organic pollutants and liver dysfunction biomarkers in a population-based human sample of men and women. Environ Res 134:251–256

    Article  CAS  Google Scholar 

  • Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66(10):1863–1871

    Article  CAS  Google Scholar 

  • Lal R (2020) Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Secur 12(4):871–876

    Article  Google Scholar 

  • Langenbach T (2013) Persistence and bioaccumulation of persistent organic pollutants (POPs). In: Patil Y, Rao P (eds) Applied bioremediation-active and passive approaches. IntechOpen, London, p 56418

    Google Scholar 

  • Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341

    Article  CAS  Google Scholar 

  • Letti LAJ, Vítola FMD, de Melo Pereira GV, Karp SG, Medeiros ABP, da Costa ESF, Bissoqui L, Soccol CR (2018) Solid-state fermentation for the production of mushrooms. In: Pandey A, Larroche C, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, Netherland, pp 285–318

    Chapter  Google Scholar 

  • Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157(5):1636–1642

    Article  CAS  Google Scholar 

  • Liu J, Zhang H, Yao Z, Li X, Tang J (2019) Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln. Chemosphere 220:1041–1046

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresour Technol 224:25–33

    Article  CAS  Google Scholar 

  • Lombi E, Hamon RE (2005) Remediation of polluted soils. In: Encyclopedia of soils in the environment. Elsevier, Netherland, pp 379–385

    Chapter  Google Scholar 

  • Lu M, Xu K, Chen J (2013) Effect of pyrene and cadmium on microbial activity and community structure in soil. Chemosphere 91(4):491–497

    Article  CAS  Google Scholar 

  • Lüneberg K, Prado B, Broszat M, Dalkmann P, Díaz D, Huebner J, Amelung W, López-Vidal Y, Siemens J, Grohmann E, Siebe C (2018) Water flow paths are hotspots for the dissemination of antibiotic resistance in soil. Chemosphere 193:1198–1206

    Article  Google Scholar 

  • Majumdar A, Upadhyay MK, Ojha M, Afsal F, Giri B, Srivastava S, Bose S (2022) Enhanced phytoremediation of metal(loid)s via spiked ZVI nanoparticles: an urban clean-up strategy with ornamental plants. Chemosphere 288:132588

    Article  CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14(2):94–104

    Article  CAS  Google Scholar 

  • McLeod AM, Paterson G, Drouillard KG, Haffner GD (2014) Ecological factors contributing to variability of persistent organic pollutant bioaccumulation within forage fish communities of the Detroit River, Ontario. Canada Environ Toxicol Chem 33(8):1825–1831

    Article  CAS  Google Scholar 

  • Mehmood A, Mahmood A, Eqani SAMAS, Malik RN, Fatima Rizvi Z, Li J, Zhang G, Ashraf A (2017) Dietary and toxicity exposure of emerging persistent organic pollutants to human health through consumption of cereal crops from Pakistan. Hum Ecol Risk Assess 23(4):655–663

    Article  CAS  Google Scholar 

  • Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S (2021) Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol 9:632059

    Article  Google Scholar 

  • Morsi R, Bilal M, Iqbal HM, Ashraf SS (2020) Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ 714:136572

    Article  CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359

    Article  CAS  Google Scholar 

  • Nikolaeva O, Karpukhin M, Streletskii R, Rozanova M, Chistova O, Panina N (2021) Linking pollution of roadside soils and ecotoxicological responses of five higher plants. Ecotoxicol Environ Saf 208:111586

    Article  CAS  Google Scholar 

  • Nikolić M, Stevović S (2015) Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For Urban Green 14(4):782–789

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  Google Scholar 

  • Orellana R, Cumsille A, Piña-Gangas P, Rojas C, Arancibia A, Donghi S, Stuardo C, Cabrera P, Arancibia G, Cárdenas F, Salazar F (2022) Economic evaluation of bioremediation of hydrocarbon-contaminated urban soils in Chile. Sustainability 14(19):11854

    Article  CAS  Google Scholar 

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526

    Article  CAS  Google Scholar 

  • Padoan E, Passarella I, Prati M, Bergante S, Facciotto G, Ajmone-Marsan F (2019) The suitability of short rotation coppice crops for phytoremediation of urban soils. Appl Sci 10(1):307

    Article  Google Scholar 

  • Pampulha ME, Oliveira A (2006) Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Curr Microbiol 53(3):238–243

    Article  CAS  Google Scholar 

  • Park S, Kim KS, Kim JT, Kang D, Sung K (2011) Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals. J Environ Sci 23(12):2034–2041

    Article  CAS  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar S, Fatma T, Siddiqui ZH (2016) Selective effect of pesticides on plant—a review. Crit Rev Food Sci Nutr 56(1):160–179

    Article  CAS  Google Scholar 

  • Pavel LV, Gavrilescu M (2008) Overview of ex situ decontamination techniques for soil cleanup. Environ Eng Manag J 7(6):815–834

    Article  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41(8–9):1665–1677

    Article  CAS  Google Scholar 

  • Qian H, Zhang M, Liu G, Lu T, Qu Q, Du B, Pan X (2018) Effects of soil residual plastic film on soil microbial community structure and fertility. Water Air Soil Pollut 229(8):1–11

    Article  CAS  Google Scholar 

  • Radziemska M, Gusiatin ZM, Holatko J, Hammerschmiedt T, Głuchowski A, Mizerski A, Jaskulska I, Baltazar T, Kintl A, Jaskulski D, Brtnicky M (2021) Nano zero valent iron (nZVI) as an amendment for phytostabilization of highly multi-PTE contaminated soil. Materials 14(10):2559

    Article  CAS  Google Scholar 

  • Rajashekar N, Murthy TS (2012) Seed germination and physiological behavior of maize (cv. NAC-6002) seedlings under abiotic stress (pendimethalin) condition. Asian. J Crop Sci 4(2):80–85

    Google Scholar 

  • Razmi B, Ghasemi-Fasaei R, Ronaghi A, Mostowfizadeh-Ghalamfarsa R (2021) Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. Ecotoxicol Environ Saf 207:111315

    Article  CAS  Google Scholar 

  • Rebello S, Nathan VK, Sindhu R, Binod P, Awasthi MK, Pandey A (2021) Bioengineered microbes for soil health restoration: present status and future. Bioengineered 12(2):12839–12853

    Article  Google Scholar 

  • Ren X, Zeng G, Tang L, Wang J, Wan J, Liu Y, Yu J, Yi H, Ye S, Deng R (2018) Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ 610:1154–1163

    Article  Google Scholar 

  • Riaz L, Mahmood T, Coyne MS, Khalid A, Rashid A, Hayat MT, Gulzar A, Amjad M (2017) Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere 177:250–257

    Article  CAS  Google Scholar 

  • Rolka E, Wyszkowski M, Szostek R, Glinka A (2022) Role of feather reed grass (Calamagrostis acutiflora) in phytoremediation of urban soils. Int J Phytoremediation. https://doi.org/10.1080/15226514.2022.2115458

  • Sachdev S, Ansari MI (2022) Role of plant microbiome under stress environment to enhance crop productivity. In: Ansari SA, Ansari MI, Husen A (eds) Augmenting crop productivity in stress environment. Springer, Singapore, pp 205–221

    Chapter  Google Scholar 

  • Sachdev S, Singh RP (2016a) Current challenges, constraints and future strategies for development of successful market for biopesticides. Clim Change Environ Sustain 4(2):129–136

    Article  Google Scholar 

  • Sachdev S, Singh RP (2016b) Studies on trends in use of pesticides and fertilizers for tomato cultivation in the vicinity of Lucknow. India Int J Sci Technol Soc 2(1–2):49–54

    Google Scholar 

  • Sachdev S, Singh RP (2018a) Root colonization: imperative mechanism for efficient plant protection and growth. MOJ Ecol Environ Sci 3(4):240–242

    Google Scholar 

  • Sachdev S, Singh RP (2018b) Isolation, characterisation and screening of native microbial isolates for biocontrol of fungal pathogens of tomato. Clim Change Environ Sustain 6(1):46–58

    Article  Google Scholar 

  • Sachdev S, Singh RP (2020) Trichoderma: a multifaceted fungus for sustainable agriculture. In: Bauddh K, Kumar S, Singh RP, Korstad J (eds) Ecological and practical applications for sustainable agriculture. Springer, Singapore, pp 261–304

    Chapter  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI (2022a) Bioactive compost for managing plant growth under stress environment. In: Ansari SA, Ansari MI, Husen A (eds) Augmenting crop productivity in stress environment. Springer, Singapore, pp 239–255

    Chapter  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277

    Article  CAS  Google Scholar 

  • Sachdev S, Jaiswal P, Ansari MI (2022b) Coordinated functions of reactive oxygen species metabolism and defense systems in abiotic stress tolerance. In: Khan MIR, Reddy P, Gupta R (eds) Advancements in developing abiotic stress-resilient plants. CRC Press, London, pp 23–44

    Chapter  Google Scholar 

  • Safarik I, Horska K, Safarikova M (2011) Magnetically responsive biocomposites for inorganic and organic xenobiotics removal. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Dordrecht, pp 301–320

    Chapter  Google Scholar 

  • Salomon MJ, Cavagnaro TR (2022) Healthy soils: the backbone of productive, safe and sustainable urban agriculture. J Clean Prod 341:130808

    Article  CAS  Google Scholar 

  • Santiago-Cruz MA, Villagrán-Vargas E, Velázquez-Rodríguez AS, Vernon-Carter EJ, Cruz-Sosa F, Orozco-Villafuerte J, Buendía-González L (2014) Exploring the Cr (VI) phytoremediation potential of Cosmos bipinnatus. Water Air and Soil Pollut 225(11):2166

    Article  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Sazykin IS, Minkina TM, Khmelevtsova LE, Antonenko EM, Azhogina TN, Dudnikova T.S., Sushkova SN, Klimova MV, Karchava SK, Seliverstova EY and Kudeevskaya EM (2021) Polycyclic aromatic hydrocarbons, antibiotic resistance genes, toxicity in the exposed to anthropogenic pressure soils of the Southern Russia. Environ Res 194:110715

    Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H, ur Rehman S and Zhaorong D (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944

    Google Scholar 

  • Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM (2018) Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 8(4):1–18

    Article  Google Scholar 

  • Shen T, Liu L, Li Y, Wang Q, Dai J, Wang R (2019) Long-term effects of untreated wastewater on soil bacterial communities. Sci Total Environ 646:940–950

    Article  CAS  Google Scholar 

  • Shim H, Wood TK (2000) Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells. Biotechnol Bioeng 70(6):693–698

    Article  CAS  Google Scholar 

  • Shukla A, Parmar P, Saraf M (2017) Radiation, radionuclides and bacteria: an in-perspective review. J Environ Radioact 180:27–35

    Article  CAS  Google Scholar 

  • Singh A, Prasad SM, Singh RP (eds) (2016) Plant responses to xenobiotics. Springer, Singapore

    Google Scholar 

  • Singh N, Megharaj M, Gates WP, Churchman GJ, Anderson J, Kookana RS, Naidu R, Chen Z, Slade PG, Sethunathan N (2003) Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay. J Agric Food Chem 51(9):2653–2658

    Article  CAS  Google Scholar 

  • Singh P, Singh VK, Singh R, Borthakur A, Madhav S, Ahamad A, Kumar A, Pal DB, Tiwary D, Mishra PK (2020) Bioremediation: a sustainable approach for management of environmental contaminants. In: Abatement of environmental pollutants. Elsevier, Netherland, pp 1–23

    Google Scholar 

  • Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258:35–41

    Article  Google Scholar 

  • Singh VK, Singh R, Kumar A, Bhadouria R, Singh P, Notarte KI (2021) Antibiotics and antibiotic resistance genes in agroecosystems as emerging contaminants. In: Singh VK, Singh R, Lichtfouse E (eds) Sustainable agriculture reviews, vol 50. Cham, Springer, pp 177–210

    Google Scholar 

  • Sivaram AK, Subashchandrabose SR, Logeshwaran P, Lockington R, Naidu R, Megharaj M (2020) Rhizodegradation of PAHs differentially altered by C3 and C4 plants. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    Article  CAS  Google Scholar 

  • Su Y, Dai Y, Lin Y, Gao X, Han Y, Zhao B (2012) Serum organochlorine pesticide residues and risk of gallstone disease: a case-control study in Xiamen. Ann Epidemiol 22(8):592–597

    Article  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Tripathi S, Sanjeevi R, Anuradha J, Chauhan DS, Rathoure AK (2022) Nano-bioremediation: nanotechnology and bioremediation. In: Research anthology on emerging techniques in environmental remediation. IGI Global, Pennsylvania, pp 135–149

    Chapter  Google Scholar 

  • Tripathi S, Singh VK, Srivastava P, Singh R, Devi RS, Kumar A, Bhadouria R (2020) Phytoremediation of organic pollutants: current status and future directions. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, Netherland, pp 81–105

    Chapter  Google Scholar 

  • Usmani Z, Sharma M, Lukk T, Gupta VK (2021) Role of fungi in bioremediation of soil contaminated with persistent organic compounds. In: Abdel-Azeem AM, Yadav AN, Yadav N, Usmani Z (eds) Industrially important fungi for sustainable development. Springer, Cham, pp 461–478

    Chapter  Google Scholar 

  • Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146

    Article  Google Scholar 

  • Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291

    Article  CAS  Google Scholar 

  • Villaverde J, Rubio-Bellido M, Lara-Moreno A, Merchan F, Morillo E (2018) Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere 193:118–125

    Article  CAS  Google Scholar 

  • Visconti D, Álvarez-Robles MJ, Fiorentino N, Fagnano M, Clemente R (2020) Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere 260:127661

    Article  CAS  Google Scholar 

  • Wang J, Lv S, Zhang M, Chen G, Zhu T, Zhang S, Teng Y, Christie P, Luo Y (2016) Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151:171–177

    Article  CAS  Google Scholar 

  • Wang R, Wang J, Wang J, Zhu L, Zhang W, Zhao X, Ahmad Z (2019) Growth inhibiting effects of four antibiotics on cucumber, rape and Chinese cabbage. Bull Environ Contam Toxicol 103(1):187–192

    Article  Google Scholar 

  • Wang W, Leung AOW, Chu LH, Wong MH (2018a) Phthalates contamination in China: status, trends and human exposure-with an emphasis on oral intake. Environ Pollut 238:771–782

    Article  CAS  Google Scholar 

  • Wang W, Liu X, Li K, Li T (2018b) Dechlorinating performance of Dehalococcoides spp. mixed culture enhanced by tourmaline. Chemosphere 194:9–19

    Article  Google Scholar 

  • Wen J, Gao D, Zhang B, Liang H (2011) Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the Northeast China. Int Biodeterior Biodegrad 65(4):600–604

    Article  CAS  Google Scholar 

  • Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front Plant Sci 7:755

    Article  Google Scholar 

  • Xin X, Zhang J, Zhu A, Zhang C (2016) Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China plain. Soil Tillage Res 156:166–172

    Article  Google Scholar 

  • Xu B, Liu F, Brookes PC, Xu J (2018) Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ Pollut 240:87–94

    Article  CAS  Google Scholar 

  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Article  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Yongsheng W, Qihui L, Qian T (2011) Effect of Pb on growth, accumulation and quality component of tea plant. Procedia Eng 18:214–219

    Article  Google Scholar 

  • Zhang H, Yuan X, Xiong T, Wang H, Jiang L (2020) Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chem Eng J 398:125657

    Article  CAS  Google Scholar 

  • Zhang Y, Wang F, Wei H, Wu Z, Zhao Q, Jiang X (2013) Enhanced biodegradation of poorly available polycyclic aromatic hydrocarbons by easily available one. Int Biodeterior Biodegrad 84:72–78

    Article  CAS  Google Scholar 

  • Zhao C, Dong Y, Feng Y, Li Y, Dong Y (2019) Thermal desorption for remediation of contaminated soil: a review. Chemosphere 221:841–855

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Sachdev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S., Sachdev, S. (2023). Bioremediation: An Alternative Tool for Restoration of Urban Agroecosystem Contaminated with Harmful Xenobiotics. In: Singh, R., Singh, P., Tripathi, S., Chandra, K.K., Bhadouria, R. (eds) Xenobiotics in Urban Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-35775-6_14

Download citation

Publish with us

Policies and ethics