Skip to main content

Generation of Consistent Slip, Trip and Fall Kinematic Data via Instability Detection and Recovery Performance Analysis for Use in Machine Learning Algorithms for (Near) Fall Detection

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2023)

Abstract

Slip, trip and fall (STF) accidents are a major problem for companies in many industries and cause massive work absences. According to the German employers' liability insurance associations, this type of accident has been leading the list of reportable occupational accidents in the traffic, transport and logistics sector for years. A total of 172,045 STF accidents occurred during the reporting period of the German Social Accident Insurance (DGUV Report 2021) seven of which were fatal, and 2,694 new accident pensions. This paper focuses on the standardized acquisition of kinematic data of STF events and its use to assess dynamic stability control during locomotion for machine learning. Accurate detection of near falls via machine learning could help to identify subjects at high risk of falling and ensure that fall prevention interventions are provided to targeted individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DGUV. Statistik Arbeitsunfallgeschehen 2019 (2020). https://www.dguv.de/de/zahlen-fakten/index.jsp.

  2. Hsiao, H.: Fall prevention research and practice: a total worker safety approach. Ind. Health 52, 381–392 (2014)

    Article  Google Scholar 

  3. BAuA, Sturz, Ausrutschen, Stolpern, Umknicken (2021).https://www.baua.de/DE/Themen/Arbeitsgestaltung-im-Betrieb/Gefaehrdungsbeurteilung/Expertenwissen/Mechanische-Gefaehrdungen/Sturz-Ausrutschen-Stolpern-Umknicken/Sturz-Ausrutschen-Stolpern-Umknicken_node.html

  4. BGHM. Vorsicht, Rutschgefahr! Stolpern, Ausrutschen, Stürzen - Die häufigsten Unfallursachen bei der Arbeit (2021). https://www.bghm.de/bghm/presseservice/text-portal-fuer-interne-kommunikation/vorsicht-rutschgefahr

  5. Verkehr, B.: Stolpern, Rutschen, Stürzen (2021). https://www.bg-verkehr.de/arbeitssicherheit-gesundheit/branchen/gueterkraftverkehr/animationsfilme/stolpern-rutschen-stuerzen

  6. DGUV. Statistik Arbeitsunfallgeschehen 2021 (2021). https://www.dguv.de/de/zahlen-fakten/index.jsp.

  7. Mohr, J.O.: Fit gegen das Stolpern – Projektstudie der HFUK Nord. 6. DGUV-Fachgespräch Ergonomie, pp. 125–127 (2017)

    Google Scholar 

  8. Bentley, T.A.: Slip, trip and fall accidents occurring during the delivery of mail. Ergonomics 41, 1859–1872 (1998)

    Article  Google Scholar 

  9. Wetzel, C.: Entwicklung einer Rutschhemmungsmatrix zur Auswahl von Bodenbelägen und Schuhen zur Reduzierung von Ausgleitunfällen. Bergische Universität Wuppertal (2013)

    Google Scholar 

  10. Lehto, M.R., Cook, B.T.: Occupational health and safety management. In: Handbook of Human Factors and Ergonomics, pp. 701–733 (2012)

    Google Scholar 

  11. E. O. F. D. 89/391/EEC. The introduction of measures to encourage improvements in the safety and health of workers at work. Official Journal of the European Union L 183, 29/06/1989, pp. 1–8 (2008)

    Google Scholar 

  12. Paridon, H.: Entstehung von Stolper-, Rutsch- und Sturzunfälle. BGAG-Report 1/05 (2005)

    Google Scholar 

  13. Chang, W.-R., Leclercq, S., Lockhart, T.E., Haslam, R.: State of science: occupational slips, trips and falls on the same level. In: Ergonomics, pp. 861–883 (2016)

    Google Scholar 

  14. Haslam, R.A., Bentley, T.A.: Follow-up investigations of slip, trip and fall accidents among postal delivery workers. In: Safety Science, pp. 33–47 (1999)

    Google Scholar 

  15. Bentley, T.A., Halsam, R.A.: Identification of risk factors and countermeasures for slip, trip and fall accidents during the delivery of mail. In: Applied Ergonomics, pp. 127–134 (2001)

    Google Scholar 

  16. DGUV. DGUV Information 208–035 - Zustellen von Sendungen (2020)

    Google Scholar 

  17. Aziz, O., Musngi, M., Park, E.J., Mori, G., Robinovitch, S.N.: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Compu. 55(1), 45–55 (2016). https://doi.org/10.1007/s11517-016-1504-y

    Article  Google Scholar 

  18. Casilari, E., Lora-Rivera, R., García-Lagos, F.: A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets. Sensors 20(5), 2020 (2020)

    Google Scholar 

  19. Bagalà, F., et al.: Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls. PLoS ONE 7(5) (2012)

    Google Scholar 

  20. I. Pang, Y. Okubo, D. Sturnieks, S. R. Lord und M. A. Brodie, „Detection of Near Falls Using Wearable Devices,“ Journal of Geriatric Physical Therapy, pp. 48–56, 2019

    Google Scholar 

  21. Lee, J.K., Robinovitch, S.N., Park, E.J.: Inertial sensing-based pre-impact de-tection of falls involving near-fall scenarios. IEEE Trans. Neural Syst. Rehabil. Eng. 23(2), 258–266 (2015)

    Article  Google Scholar 

  22. Albert, M.V., Kording, K., Herrmann, M., Jayaraman, A.: Fall classification by machine learning using mobile phones. PloS One 7(5) (2012)

    Google Scholar 

  23. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture, 285–291 (2008)

    Google Scholar 

  24. Nyan, M.N., Tay, F.E.H., Murugasu, E.: A wearable system for pre-impact fall detection. J. Biomech., 3475–3481 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schneider, M. et al. (2023). Generation of Consistent Slip, Trip and Fall Kinematic Data via Instability Detection and Recovery Performance Analysis for Use in Machine Learning Algorithms for (Near) Fall Detection. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14029. Springer, Cham. https://doi.org/10.1007/978-3-031-35748-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35748-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35747-3

  • Online ISBN: 978-3-031-35748-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics