Skip to main content

Experimental Validation of Networked Aerial IoUT Solutions: Testbeds and Measurements

  • Chapter
  • First Online:
Internet of Unmanned Things (IoUT) and Mission-based Networking

Part of the book series: Internet of Things ((ITTCC))

Abstract

An aerial Internet of Unmanned Things (IoUT) is exposed to many practical issues, such as signal propagation in unknown 3D environments, simultaneous heterogeneous network traffic types, and the need to coordinate with aerial vehicles, ground vehicles, and humans. Typically, several wireless channels co-exist to serve aerial control communication that requires low-latency and time guarantees and primarily video transmission that calls for high data rates. Environmental context information is often utilized and exchanged as well, above all location context, which is important for navigation and coordination of unmanned aerial vehicles. While in principle both communication and positioning technologies are available, practical inaccuracies and disturbances are challenging for an aerial IoUT. Thus, the validation of solutions for aerial networked systems strongly requires an experimental approach to discover deficiencies and to ensure practicality. In this chapter, we review the requirements for aerial networking and communications and discuss the capabilities and limitations of major candidate wireless technologies: Wi-Fi, 4G/5G, and LoRaWAN. We present a survey of current testbeds and achieved performance of single and multi-hop links, which is intended to serve as a guide for the setup of an aerial IoUT testbed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Amazon Prime Air Drone Delivery, announced on June 13, 2022, https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries (visited Dec. 21, 2022).

  2. 2.

    LoRa Alliance, https://lora-alliance.org/.

References

  1. A.S. Abdalla, V. Marojevic, Communications standards for unmanned aircraft systems: the 3GPP perspective and research drivers. IEEE Commun. Stand. Mag. 5(1), 70–77 (2021). https://doi.org/10.1109/MCOMSTD.001.2000032

    Article  Google Scholar 

  2. V. Acuna, A. Kumbhar, E. Vattapparamban, F. Rajabli, I. Guvenc, Localization of WiFi devices using probe requests captured at unmanned aerial vehicles, in 2017 IEEE Wireless Communications and Networking Conference (WCNC) (2017), pp. 1–6. https://doi.org/10.1109/WCNC.2017.7925654

  3. R. Amorim, P. Mogensen, T. Sorensen, I.Z. Kovács, J. Wigard, Pathloss measurements and modeling for UAVs connected to cellular networks, in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (IEEE, Piscataway, 2017), pp. 1–6. https://doi.org/10.1109/VTCSpring.2017.8108204

    Book  Google Scholar 

  4. T. Andre, K.A. Hummel, A.P. Schoellig, E. Yanmaz, M. Asadpour, C. Bettstetter, P. Grippa, H. Hellwagner, S. Sand, S. Zhang, Application-driven design of aerial communication networks. IEEE Commun. Mag. 52(5), 129–137 (2014). https://doi.org/10.1109/MCOM.2014.6815903

    Article  Google Scholar 

  5. M. Asadpour, B. Van den Bergh, D. Giustiniano, K.A. Hummel, S. Pollin, B. Plattner, Micro aerial vehicle networks: an experimental analysis of challenges and opportunities. IEEE Commun. Mag. 52(7), 141–149 (2014). https://doi.org/10.1109/MCOM.2014.6852096

    Article  Google Scholar 

  6. M. Asadpour, M. Burger, F. Schuiki, K.A. Hummel, Needle in a haystack: limiting the search space in mission-aware packet forwarding for drones, in Proceedings of the 1st International Workshop on Experiences with the Design and Implementation of Smart Objects, SmartObjects ’15 (2015), pp. 31–36. https://doi.org/10.1145/2797044.2797057

  7. M. Asadpour, D. Giustiniano, K.A. Hummel, From ground to aerial communication: dissecting WLAN 802.11n for the drones, in Proceedings of the 8th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, WiNTECH ’13 (2013), pp. 25–32. https://doi.org/10.1145/2505469.2505472

  8. M. Asadpour, D. Giustiniano, K.A. Hummel, S. Egli, UAV networks in rescue missions, in Proceedings of the 8th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, WiNTECH ’13 (2013), pp. 91–92. https://doi.org/10.1145/2505469.2506491

  9. M. Asadpour, D. Giustiniano, K.A. Hummel, S. Heimlicher, S. Egli, Now or later? Delaying data transfer in time-critical aerial communication, in CoNEXT ’13, CoNEXT ’13 (2013), pp. 127–132. https://doi.org/10.1145/2535372.2535409

  10. M. Asadpour, K.A. Hummel, D. Giustiniano, S. Draskovic, Route or carry: motion-driven packet forwarding in micro aerial vehicle networks. IEEE Trans. Mobile Comput. 16(3), 843–856 (2017). https://doi.org/10.1109/TMC.2016.2561291

    Article  Google Scholar 

  11. G.E. Athanasiadou, M.C. Batistatos, D.A. Zarbouti, G.V. Tsoulos, LTE ground-to-air field measurements in the context of flying relays. IEEE Wirel. Commun. 26(1), 12–17 (2019). https://doi.org/10.1109/MWC.2018.1800225

    Article  Google Scholar 

  12. M.C. Batistatos, G.E. Athanasiadou, D.A. Zarbouti, G.V. Tsoulos, N.C. Sagias, LTE ground-to-air measurements for UAV-assisted cellular networks, in 12th European Conference on Antennas and Propagation (EuCAP 2018) (2018), pp. 1–5. https://doi.org/10.1049/cp.2018.1160

  13. D. Becker, U.C. Fiebig, L. Schalk, Wideband channel measurements and first findings for low altitude drone-to-drone links in an urban scenario, in 2020 14th European Conference on Antennas and Propagation (EuCAP) (2020), pp. 1–5. https://doi.org/10.23919/EuCAP48036.2020.9135494

  14. B. Van der Bergh, A. Chiumento, S. Pollin, LTE in the sky: trading off propagation benefits with interference costs for aerial nodes. IEEE Commun. Mag. 54(5), 44–50 (2016). https://doi.org/10.1109/MCOM.2016.7470934

    Article  Google Scholar 

  15. D. Brodņevs, A. Kutins, Deterioration causes evaluation of third generation cellular LTE services for moving unmanned terrestrial and aerial systems. Electr. Control Commun. Eng. 14(2), 141–148 (2018). https://doi.org/10.2478/ecce-2018-0017

    Article  Google Scholar 

  16. J. Buczek, L. Bertizzolo, S. Basagni, T. Melodia, What is a wireless UAV? A design blueprint for 6G flying wireless nodes, in Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, WiNTECH’21 (2022), pp. 24–30. https://doi.org/10.1145/3477086.3480840

  17. J. Chen, D. Raye, W. Khawaja, P. Sinha, I. Guvenc, Impact of 3D UWB antenna radiation pattern on air-to-ground drone connectivity, in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (2018), pp. 1–5. https://doi.org/10.1109/VTCFall.2018.8690726

  18. I. Donevski, C. Raffelsberger, M. Sende, A. Fakhreddine, J.J. Nielsen, An experimental analysis on drone-mounted access points for improved latency-reliability, in Proceedings of the 7th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, Dronet’21 (2021), pp. 31–36. https://doi.org/10.1145/3469259.3470489

  19. I. ElKassabi, A. Abdrabou, An experimental comparative performance study of different WiFi standards for smart cities outdoor environments, in 2022 IEEE 13th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON) (2022), pp. 0450–0455. https://doi.org/10.1109/UEMCON54665.2022.9965626

  20. A. Fakhreddine, C. Bettstetter, S. Hayat, R. Muzaffar, D. Emini, Handover challenges for cellular-connected drones, in Proceedings of the 5th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (2019), pp. 9–14. https://doi.org/10.1145/3325421.3329770

  21. J. Fleureau, Q. Galvane, F.L. Tariolle, P. Guillotel, Generic drone control platform for autonomous capture of cinema scenes, in Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, DroNet ’16 (2016), pp. 35–40. https://doi.org/10.1145/2935620.2935622

  22. A. Freistetter, M. Pollak, K.A. Hummel, Performance of a networked human-drone team, in Proceedings of the 6th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, ed. by E. Chai, R. Han (Association for Computing Machinery, 2020), pp. 1–6. https://doi.org/10.1145/3396864.3399703

  23. B. Galkin, E. Fonseca, G. Lee, C. Duff, M. Kelly, E. Emmanuel, I. Dusparic, Experimental evaluation of a UAV user QoS from a two-tier 3.6 GHz spectrum network (2020). https://doi.org/10.48550/ARXIV.2011.03236

  24. A.E. Garcia, M. Ozger, A. Baltaci, S. Hofmann, D. Gera, M. Nilson, C. Cavdar, D. Schupke, Direct air to ground communications for flying vehicles: Measurement and scaling study for 5G, in 2019 IEEE 2nd 5G World Forum (5GWF) (IEEE, Piscataway, 2019), pp. 310–315. https://doi.org/10.1109/5GWF.2019.8911712

    Book  Google Scholar 

  25. G. Geraci, A. Garcia-Rodriguez, M.M. Azari, A. Lozano, M. Mezzavilla, S. Chatzinotas, Y. Chen, S. Rangan, M. Di Renzo, What will the future of UAV cellular communications be? A flight from 5G to 6G (2021). https://doi.org/10.48550/ARXIV.2105.04842

  26. M. Gharib, S. Nandadapu, F. Afghah, An exhaustive study of using commercial LTE network for UAV communication in rural areas, in 2021 IEEE International Conference on Communications Workshops (ICC Workshops) (2021), pp. 1–6. https://doi.org/10.1109/ICCWorkshops50388.2021.9473547

  27. M.H.M. Ghazali, K. Teoh, W. Rahiman, A systematic review of real-time deployments of UAV-based LoRa communication network. IEEE Access 9, 124817–124830 (2021). https://doi.org/10.1109/ACCESS.2021.3110872

    Article  Google Scholar 

  28. S. Hayat, C. Bettstetter, A. Fakhreddine, R. Muzaffar, D. Emini, An experimental evaluation of LTE—a throughput for drones, in Proceedings of the 5th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (2019), pp. 3–8. https://doi.org/10.1145/3325421.3329765

  29. S. Hayat, E. Yanmaz, C. Bettstetter, Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11n and 802.11ac, in 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2015), pp. 1991–1996. https://doi.org/10.1109/PIMRC.2015.7343625

  30. S. Hayat, E. Yanmaz, R. Muzaffar, Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutorials 18(4), 2624–2661 (2016). https://doi.org/10.1109/COMST.2016.2560343

    Article  Google Scholar 

  31. R. Hekmat, P.V. Mieghem, Interference in wireless multi-hop ad-hoc networks and its effect on network capacity. Wirel. Netw. 10, 389–399 (2004). https://doi.org/10.1023/B:WINE.0000028543.41559.ed

    Article  Google Scholar 

  32. S. Homayouni, M. Paier, C. Benischek, G. Pernjak, M. Reichelt, C. Fuchsjäger, Field trials and design insights of cellular-connected drones, in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) (2021), pp. 1–6. https://doi.org/10.1109/VTC2021-Fall52928.2021.9625555

  33. K.A. Hummel, M. Pollak, J. Krahofer, A distributed architecture for human-drone teaming: timing challenges and interaction opportunities. Sensors (Basel, Switzerland) 19(6) (2019). https://doi.org/10.3390/s19061379

  34. T. Izydorczyk, M.M. Ginard, S. Svendsen, G. Berardinelli, P. Mogensen, Experimental evaluation of beamforming on UAVs in cellular systems, in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall) (IEEE, Piscataway, 2020), pp. 1–5. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348711

    Book  Google Scholar 

  35. W. Khawaja, I. Guvenc, D. Matolak, UWB channel sounding and modeling for UAV air-to-ground propagation channels, in 2016 IEEE Global Communications Conference (GLOBECOM) (IEEE, Piscataway, 2016), pp. 1–7. https://doi.org/10.1109/GLOCOM.2016.7842372

    Google Scholar 

  36. I. Kovacs, R. Amorim, H.C. Nguyen, J. Wigard, P. Mogensen, Interference analysis for UAV connectivity over LTE using aerial radio measurements, in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (IEEE, Piscataway, 2017), pp. 1–6. https://doi.org/10.1109/VTCFall.2017.8287891

    Google Scholar 

  37. V. Mayor, R. Estepa, A. Estepa, G. Madinabeitia, Deployment of UAV-mounted access points for VoWiFi service with guaranteed QoS. Comput. Commun. 193, 94–108 (2022). https://doi.org/10.1016/j.comcom.2022.06.037

    Article  Google Scholar 

  38. D. Mishra, E. Natalizio, A survey on cellular-connected UAVs: design challenges, enabling 5G/B5G innovations, and experimental advancements. Comput. Netw. 182, 107451 (2020). https://doi.org/10.1016/j.comnet.2020.107451

    Article  Google Scholar 

  39. N.L. Mohd Kamal, Z. Sahwee, N. Norhashim, N. Lott, S.A. Hamid, W. Hashim, Throughput performance of 4G-based UAV in a sub-urban environment in Malaysia, in 2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE) (2020), pp. 49–53. https://doi.org/10.1109/WiSEE44079.2020.9262610

  40. R. Muzaffar, C. Raffelsberger, A. Fakhreddine, J.L. Luque, D. Emini, C. Bettstetter, First experiments with a 5G-connected drone, in Proceedings of the 6th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (2020), pp. 1–5. https://doi.org/10.1145/3396864.3400304

  41. R. Muzaffar, V. Vukadinovic, A. Cavallaro, Rate-adaptive multicast video streaming from teams of micro aerial vehicles, in 2016 IEEE International Conference on Robotics and Automation (ICRA) (2016), pp. 1194–1201. https://doi.org/10.1109/ICRA.2016.7487250

  42. R. Muzaffar, E. Yanmaz, C. Raffelsberger, C. Bettstetter, A. Cavallaro, Live multicast video streaming from drones: an experimental study. Auton. Robots 44(1), 75–91 (2020). https://doi.org/10.1007/s10514-019-09851-6

    Article  Google Scholar 

  43. G.J. Nunns, Y.J. Chen, D.K. Chang, K.M. Liao, F.P. Tso, L. Cui, Autonomous flying WiFi access point, in 2019 IEEE Symposium on Computers and Communications (ISCC) (2019), pp. 278–283. https://doi.org/10.1109/ISCC47284.2019.8969672

  44. M. Pollak, A. Salfinger, K.A. Hummel, Teaching drones on the fly: can emotional feedback serve as learning signal for training artificial agents? (2022). https://doi.org/10.48550/ARXIV.2202.09634

  45. Z. Qiu, X. Chu, C. Calvo-Ramirez, C. Briso, X. Yin, Low altitude UAV air-to-ground channel measurement and modeling in semiurban environments. Wirel. Commun. Mobile Comput. 2017 (2017). https://doi.org/10.1155/2017/1587412

  46. A. Rejeb, A. Abdollahi, K. Rejeb, H. Treiblmaier, Drones in agriculture: a review and bibliometric analysis. Comput. Electron. Agric. 198, 107017 (2022). https://doi.org/10.1016/j.compag.2022.107017

    Article  Google Scholar 

  47. Y. Shi, J. Wensowitch, A. Ward, M. Badi, J. Camp, Building UAV-based testbeds for autonomous mobility and beamforming experimentation, in 2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops) (2018), pp. 1–5. https://doi.org/10.1109/SECONW.2018.8396345

  48. Q. Song, Y. Zeng, J. Xu, S. Jin, Survey of prototype and experiment for UAV communications. Sci. China Inf. Sci 64(140301) (2021). https://doi.org/10.1007/s11432-020-3030-2

  49. M.C. Tatum, J. Liu, Unmanned aircraft system applications in construction. Proc. Eng. 196, 167–175 (2017). https://doi.org/10.1016/j.proeng.2017.07.187. Creative Construction Conference 2017, CCC 2017, 19–22 June 2017, Primosten, Croatia

  50. A. Trotta, F.D. Andreagiovanni, M. Di Felice, E. Natalizio, K.R. Chowdhury, When UAVs ride a bus: towards energy-efficient city-scale video surveillance, in IEEE INFOCOM 2018—IEEE Conference on Computer Communications (2018), pp. 1043–1051. https://doi.org/10.1109/INFOCOM.2018.8485863

  51. H. Ullah, M. Abu-Tair, S. McClean, P. Nixon, G. Parr, C. Luo, Connecting disjoint nodes through a UAV-based wireless network for bridging communication using IEEE 802.11 protocols. EURASIP J. Wirel. Commun. Netw. 2020(142) (2020). https://doi.org/10.1186/s13638-020-01727-z

  52. E. Yanmaz, S. Hayat, J. Scherer, C. Bettstetter, Experimental performance analysis of two-hop aerial 802.11 networks, in 2014 IEEE Wireless Communications and Networking Conference (WCNC) (2014), pp. 3118–3123. https://doi.org/10.1109/WCNC.2014.6953010

  53. E. Yanmaz, R. Kuschnig, C. Bettstetter, Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility, in 2013 Proceedings IEEE INFOCOM (2013), pp. 120–124. https://doi.org/10.1109/INFCOM.2013.6566747

  54. W.J. Yun, Y.J. Ha, S. Jung, J. Kim, Autonomous aerial mobility learning for drone-taxi flight control, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (2021), pp. 329–332. https://doi.org/10.1109/ICTC52510.2021.9620751

  55. Z. Zhao, P. Cumino, C. Esposito, M. Xiao, D. Rosário, T. Braun, E. Cerqueira, S. Sargento, Smart unmanned aerial vehicles as base stations placement to improve the mobile network operations. Comput. Commun. 181, 45–57 (2022). https://doi.org/10.1016/j.comcom.2021.09.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Anna Hummel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muzaffar, R., Hummel, K.A. (2023). Experimental Validation of Networked Aerial IoUT Solutions: Testbeds and Measurements. In: Kerrache, C.A., Calafate, C., Lakas, A., Lahby, M. (eds) Internet of Unmanned Things (IoUT) and Mission-based Networking. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-33494-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33494-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33493-1

  • Online ISBN: 978-3-031-33494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics