Skip to main content

CRISPR Libraries and Whole-Genome Screening to Identify Essential Factors for Viral Infections

  • Chapter
  • First Online:
Genome Editing in Biomedical Sciences

Abstract

The CRISPR-Cas9 system has revolutionized genetics and offers a simple and inexpensive way of generating perturbation that results in gene repression, activation, or editing. The advances in this technique make possible the development of CRISPR libraries which consist of a set of sgRNAs to cause perturbations in several genes in the same cell population. The use of libraries raised the CRISPR-Cas9 technique to a genomic scale and provides a powerful approach for identifying previously unknown molecular mechanisms and pathways involved in a specific phenotype or biological process. More specifically, the CRISPRko libraries (set of sgRNAs for gene knockout) and their high-throughput screenings are widely used in research with viral agents, and it was enlarged even more with the COVID-19 pandemic. With this chapter, we aim to point out how this tool helps in understanding virus-host relationships, such as the mechanisms of virus entry into the cell, the essential factors for its replication, and the cellular pathways involved in the response against the pathogen. The chapter also provided some practical considerations for each step of an experimentation using these tools that include choosing the library and screening type, the target cell, the viral strain, the library amplification and guaranteeing its coverage, the strategies for the gene screening pipeline by bioinformatics, and finally, target validation. To conclude, it was presented a table reviewing the last updates in the research for antiviral therapies using CRISPR libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoine R et al (2021) Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal coronaviruses. bioRxiv Prepr:1–60

    Google Scholar 

  • Baggen J et al (2021) Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat Genet 53:435–444

    Article  CAS  PubMed  Google Scholar 

  • Bayat H, Naderi F, Khan AH, Memarnejadian A, Rahimpour A (2018) The impact of CRISPR-Cas system on antiviral therapy. Adv Pharm Bull 8:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biering SB et al (2021) Genome-wide, bidirectional CRISPR screens identify mucins as critical host factors modulating SARS-CoV-2 infection. bioRxiv:2021.04.22.440848

    Google Scholar 

  • Bock C et al (2022) High-content CRISPR screening. Nat Rev Methods Prim 2. https://doi.org/10.1038/s43586-021-00093-4

  • Chulanov V et al (2021) CRISPR screening: molecular tools for studying virus-host interactions. Viruses 13:2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doench JG et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 synthesis of an arrayed sgRNA library targeting the human genome. Nat Biotechnol 34:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint M et al (2019) A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus. Nat Commun 10:1–13

    Article  CAS  Google Scholar 

  • Han J et al (2018) Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Rep 23:596–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart T et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163:1515–1526

    Article  CAS  PubMed  Google Scholar 

  • Hyrina A et al (2019) A genome-wide CRISPR screen identifies ZCCHC14 as a host factor required for hepatitis B surface antigen production. Cell Rep 29:2970–2978.e6

    Article  CAS  PubMed  Google Scholar 

  • Joung J et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12:4

    Article  Google Scholar 

  • Kaminski R et al (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6:1–15

    Google Scholar 

  • Kleinstiver BP et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnopolsky S, Kuzmina A, Taube R (2020) Genome-wide crispr knockout screen identifies znf304 as a silencer of HIV transcription that promotes viral latency. PLoS Pathog 16:1–22

    Article  Google Scholar 

  • Labeau A et al (2020) A genome-wide CRISPR-Cas9 screen identifies the dolichol-phosphate mannose synthase complex as a host dependency factor for dengue virus infection. J Virol 94:e01751-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee C (2019) CRISPR/Cas9-based antiviral strategy: current status and the potential challenge. Molecules 24:1349

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W et al (2015) Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol 16:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2019) Genome-wide CRISPR screen for Zika virus resistance in human neural cells. Proc Natl Acad Sci U S A 116:9527–9532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B et al (2020) Genome-wide CRISPR screen identifies host dependency factors for influenza a virus infection. Nat Commun 11:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Meertens L et al (2019) FHL1 is a major host factor for chikungunya virus infection. Nature 574:259–263

    Article  CAS  PubMed  Google Scholar 

  • Park RJ et al (2017) A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49:193–203

    Article  CAS  PubMed  Google Scholar 

  • Potting C et al (2017) Genome-wide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy. Proc Natl Acad Sci U S A 115:E180–E189

    PubMed  PubMed Central  Google Scholar 

  • Puschnik AS, Majzoub K, Ooi YS, Carette JE (2017) A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 15:351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson TR, Weiss DS (2014) CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Front Cell Infect Microbiol 4:1–8

    Article  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:4

    Article  Google Scholar 

  • Sharon DM et al (2020) A pooled genome-wide screening strategy to identify and rank influenza host restriction factors in cell-based vaccine production platforms. Sci Rep 10:12166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shue B et al (2021) Genome-wide CRISPR screen identifies RACK1 as a critical host factor for Flavivirus replication. J Virol 95:e0059621

    Article  PubMed  Google Scholar 

  • Slaymaker IM et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science (80-) 351:84–88

    Article  CAS  Google Scholar 

  • Song Y et al (2021) A genome-wide CRISPR/Cas9 gene knockout screen identifies immunoglobulin superfamily DCC subclass member 4 as a key host factor that promotes influenza virus endocytosis. PLoS Pathog 17:1–24

    Article  Google Scholar 

  • Sun L et al (2021) Genome-scale CRISPR screen identifies TMEM41B as a multi-function host factor required for coronavirus replication. PLoS Pathog 17:1–30

    Article  Google Scholar 

  • Suzuki T et al (2022) Genome-wide CRISPR screen for HSV-1 host factors reveals PAPSS1 contributes to heparan sulfate synthesis. Commun Biol:1–11. https://doi.org/10.1038/s42003-022-03581-9

  • Wang T, Lander ES, Sabatini DM (2016) Large-scale single-guide RNA library construction and use for genetic screens. Physiol Behav 176

    Google Scholar 

  • Wang S et al (2020) Integrin αvβ5 internalizes Zika virus during neural stem cells infection and provides a promising target for antiviral therapy. Cell Rep 30:969–983. https://doi.org/10.1016/j.celrep.2019.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J et al (2020) Genome-wide CRISPR screen reveals host genes that regulate SARS-CoV-2 infection. bioRxiv Prepr Serv Biol. https://doi.org/10.1101/2020.06.16.155101

  • Wei J et al (2021) Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 184:76–91.e13

    Article  CAS  PubMed  Google Scholar 

  • Yau EH, Rana TM (2018) Next-generation sequencing of genome-wide CRISPR screens. Methods Mol Biol 1712:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2021) A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat Commun 12:1–11

    CAS  Google Scholar 

  • Zhu S et al (2022) Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry. Sci China Life Sci 65:701–717

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Mattar Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paiva, I.M., Damasceno, S., Cunha, T.M. (2023). CRISPR Libraries and Whole-Genome Screening to Identify Essential Factors for Viral Infections. In: Passos, G.A. (eds) Genome Editing in Biomedical Sciences. Advances in Experimental Medicine and Biology, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-33325-5_9

Download citation

Publish with us

Policies and ethics