Skip to main content

Cognitive Neurorehabilitation in Epilepsy Patients via Virtual Reality Environments: Systematic Review

  • Conference paper
  • First Online:
GeNeDis 2022 (GeNeDis 2022)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adlakha, S., Chhabra, D., & Shukla, P. (2020). Effectiveness of gamification for the rehabilitation of neurodegenerative disorders. Chaos, Solitons & Fractals, 140, 1–11. https://doi.org/10.1016/j.chaos.2020.110192

    Article  Google Scholar 

  2. Anderson, J., Bothell, D., Fincham, J., Anderson, A., Poole, B., & Qin, Y. (2011). Brain regions engaged by part- and whole-task performance in a video game: a model-based test of the decomposition hypothesis. Journal of cognitive neuroscience, 3983–3997. https://doi.org/10.1162/jocn_a_00033

  3. Bin, S., Masood, S., & Joung, Y. (2020). Virtual and augmented reality in medicine. In D. Feng (Ed.), Biomedical Information Technology (2nd ed., pp. 673–686). London, UK: Academic Press. https://doi.org/10.1016/B978-0-12-816034-3.00020-1

  4. Blooma, J., & Wickramasinghe, N. (2020). A Review of Mixed Reality in Health Care. In N. Wickramasinghe, & F. Bodendorf (Eds.), Delivering Superior Health and Wellness Management with IoT and Analytics. Healthcare Delivery in the Information Age (pp. 375–382). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-17347-0_18

    Chapter  Google Scholar 

  5. Bratteli, O., & Robinson, D. (1979). Decomposition Theory. In Operator Algebras and Quantum Statistical Mechanics. Texts and Monographs in Physics. Berlin: Springer. https://doi.org/10.1007/978-3-662-02313-6_4

  6. Cánovas, R., Leon, I., Serrano, P., Roldan, M., & Cimadevilla, J. (2011). Spatial navigation impairment in patients with refractory temporal lobe epilepsy: Evidence from a new virtual reality-based task. Epilepsy & Behavior, 22(2), 364-369. https://doi.org/10.1016/j.yebeh.2011.07.021

    Article  Google Scholar 

  7. Committee on Standards for Systematic Reviews of Comparative Effectiveness Research (2011). Standards for Synthesizing the Body of Evidence. In J. Eden, L. Levit, A. Berg, & S. Morton (Eds.), Finding What Works in Health Care: Standards for Systematic Reviews. Washington, USA: National Academies Press. Retrieved from Cochrane Web Site: https://www.nihlibrary.nih.gov/sites/default/files/Finding_What_Works_in_Health_Care_Standards_for_Systematic_Reviews_IOM_2011.pdf

  8. Craik, F., & Lockhart, R. (1972). Levels of Processing: A Framework for Memory Research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671-684. https://doi.org/10.1016/S0022-5371(72)80001-X

    Article  Google Scholar 

  9. Del Felice, A., Alderighi, M., Martinato, M., Grisafi, D., Bosco, A., Thompson, P., Sander, J.W., & Masiero, S. (2017). Memory Rehabilitation Strategies in Nonsurgical Temporal Lobe Epilepsy. American Journal of Physical Medicine & Rehabilitation, 96(7), 506–514. https://doi.org/10.1097/PHM.0000000000000714

    Article  Google Scholar 

  10. Fasilis, T., Patrikelis, P., Siatouni, A., Alexoudi, A., Veretzioti, A., Zachou, L., & Gatzonis, S. (2018). A pilot study and brief overview of rehabilitation via virtual environment in patients suffering from dementia. Psychiatriki, 29(1), 42–51. https://doi.org/10.22365/jpsych.2018.291.42

    Article  PubMed  Google Scholar 

  11. Georgiev, D., Georgieva, I., Gong, Z., Nanjappan, V., & Georgiev, G. (2021). Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Science, 11(2), 221. https://doi.org/10.3390/brainsci11020221

    Article  Google Scholar 

  12. Grewe, P., Kohsik, A., Flentge, D., Dyck, E., Botsch, M., Winter, Y., Markowitsch, H.J., Bien, C.G., & Piefke, M. (2013). Learning real-life cognitive abilities in a novel 360°- virtual reality supermarket: a neuropsychological study of healthy participants and patients with epilepsy. Journal of Neuroengineering and Rehabilitation, 10(42), 1–15. https://doi.org/10.1186/1743-0003-10-42

    Article  Google Scholar 

  13. Grewe, P., Lahr, D., Kohsik, A., Dyck, E., Markowitsch, H., Bien, C., Botsch, M., & Piefke, M. (2014). Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task. Epilepsy & Behavior, 31, 57–66. https://doi.org/10.1016/j.yebeh.2013.11.014

    Article  CAS  Google Scholar 

  14. Höller, Y., Höhn, C., Schwimmbeck, F., Plancher, G., & Trinka, E. (2020a). A virtual reality paradigm to assess episodic memory: Validation-dataset for six parallel versions and a structured behavioral assessment. Data in Brief, 29, 1–12. https://doi.org/10.1016/j.dib.2020.105279

    Article  Google Scholar 

  15. Höller, Y., Höhn, C., Schwimmbeck, F., Plancher, G., & Trinka, E. (2020b). Effects of Antiepileptic Drug Tapering on Episodic Memory as Measured by Virtual Reality Tests. Frontiers in Neurology, 11, 1–14. https://doi.org/10.3389/fneur.2020.00093

    Article  Google Scholar 

  16. ILAE. (2022, 1 14). Epilepsy Classiffication: Definition of Epilepsy. Retrieved from Epilepsy Diagnosis: https://www.epilepsydiagnosis.org/epilepsy/epilepsy-classification-groupoverview.html

  17. Joplin, S., Stewart, E., Gascoigne, M., & Lah, S. (2018). Memory Rehabilitation in Patients with Epilepsy: a Systematic Review. Neuropsychology Review, 28(1), 88–110. https://doi.org/10.1007/s11065-018-9367-7

    Article  PubMed  Google Scholar 

  18. Kern, F., Winter, C., Gall, D., Käthner, I., Pauli, P., & Latoschik, M. (2019). Immersive Virtual Reality and Gamification Within Procedurally Generated Environments to Increase Motivation During Gait Rehabilitation. IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 500–509). Osaka, Japa: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/VR.2019.8797828

    Chapter  Google Scholar 

  19. Kolk, A., Saard, M., Pertens, L., Kallakas, T., Sepp, K., & Kornet, K. (2018). Structured Model of Neurorehab: A Pilot Study of Modern Multitouch Technology and Virtual Reality Platforms for Training Sociocognitive Deficit in Children with Acquired Brain Injury. Applied neuropsychology, 8(4), 326–332. https://doi.org/10.1080/21622965.2018.1486193

    Article  PubMed  Google Scholar 

  20. Maidenbaum, S., Patel, A., Stein, E., & Jacobs, J. (2019). Spatial Memory Rehabilitation in Virtual Reality – Extending findings from Epilepsy Patients to the General Population. Tel Aviv: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICVR46560.2019.8994573

    Book  Google Scholar 

  21. Methley, A., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Research, 14(1), 579. https://doi.org/10.1186/s12913-014-0579-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Patrikelis, P., Konstantakopoulos, G., Messinis, L., Alexoudi, A., Stefanatou, M., Nasios, G., & Gatzonis, S. (2021). Adaptive immersive Virtual Environments as a treatment for depersonalization disorder. Psychiatrike, 32(4), 317–327. https://doi.org/10.22365/jpsych.2021.032

    Article  PubMed  Google Scholar 

  23. Quak, M., London, R., & Talsma, D. (2015). A multisensory perspective of working memory. Frontiers in Human Neuroscience, 9(1), 197. https://doi.org/10.3389/fnhum.2015.00197

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rosas, K., Parron, I., Serrano, P., & Cimadevilla, J. (2013). Spatial recognition memory in a virtual reality task is altered in refractory temporal lobe epilepsy. Epilepsy & Behavior, 28, 227–231. https://doi.org/10.1016/j.yebeh.2013.05.010

    Article  Google Scholar 

  25. Saard, M., Bachmann, M., Sepp, K., Pertens, L., Kornet, K., Reinart, L., Kööp, C., & Kolk, A. (2019). Positive outcome of visuospatial deficit rehabilitation in children with epilepsy using computer-based FORAMENRehab program. Epilepsy & Behavior, 100(Pt A), 1–11. https://doi.org/10.1016/j.yebeh.2019.106521

    Article  Google Scholar 

  26. Sterne, J., Hernán, M., McAleenan, A., Reeves, B., & Higgins, J. (2021). Assessing risk of bias in a non-randomized study. In J. Higgins, T. J. J. Chandler, M. Cumpston, T. Li, M. Page, & V. Welch (Eds.), Cochrane Handbook for Systematic Reviews of Interventions (6th ed.). John Wiley & Sons. Retrieved from https://training.cochrane.org/handbook/current/chapter-25

  27. Trés, E., & Brucki, S. (2014). Visuospatial processing: A review from basic to current concepts. Dementia & Neuropsychologia, 8(2), 175–181. https://doi.org/10.1590/S1980-57642014DN82000014

    Article  Google Scholar 

  28. Weniger, G., Ruhleder, M., Lange, C., & Irle, E. (2012). Impaired egocentric memory and reduced somatosensory cortex size in temporal lobe epilepsy with hippocampal sclerosis. Behavioural Brain Research, 227(1), 116–124. https://doi.org/10.1016/j.bbr.2011.10.043

    Article  PubMed  Google Scholar 

  29. Winne, P. (2018). Theorizing and researching levels of processing in self-regulated learning. British Journal of Educational Psychology, 88(1), 9–20. https://doi.org/10.1111/bjep.12173

    Article  PubMed  Google Scholar 

  30. Yang, L., Morland, T., Schmits, K., Rawson, E., Narasimhan, P., Motelow, J., Purcaro, M.J., Peng, K., Raouf, S., Desalvo, M.N., Oh, T., Wilkerson, J., Bod, J., Srinivasan, A., Kurashvili, P., Anaya, J., Manza, P., Danielson, N., Ransom, C.B., Huh, L., & Blumenfeld, H. (2010). A prospective study of loss of consciousness in epilepsy using virtual reality driving simulation and other video games. Epilepsy & Behavior, 18(3), 238–246. https://doi.org/10.1016/j.yebeh.2010.04.011

    Article  Google Scholar 

  31. Zell, E., Dyck, E., Kohsik, A., Grewe, P., Flentge, D., Winter, Y., Piefke, M., & Botsch, M. (2013). OCTAVIS: A Virtual Reality System for Clinical Studies and Rehabilitation. Eurographics, 9–12. https://doi.org/10.2312/conf/EG2013/med/009-012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lambros Messinis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fasilis, T. et al. (2023). Cognitive Neurorehabilitation in Epilepsy Patients via Virtual Reality Environments: Systematic Review. In: Vlamos, P. (eds) GeNeDis 2022. GeNeDis 2022. Advances in Experimental Medicine and Biology, vol 1424. Springer, Cham. https://doi.org/10.1007/978-3-031-31982-2_14

Download citation

Publish with us

Policies and ethics