Skip to main content

A Segmentation Based Robust Fractional Variational Model for Motion Estimation

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

In this paper, we introduce a nonlinear robust fractional order variational framework for motion estimation from image sequences (video). Particularly, the presented model provides a generalization of integer order derivative based variational functionals and offers an enhanced robustness against outliers while preserving the discontinuity in the dense flow field. The motion is estimated in the form of optical flow. For this purpose, a level set segmentation based fractional order variational functional composed of a non-quadratic Charbonnier norm and a regularization term is propounded. The non-quadratic Charbonnier norm introduces a noise robust character in the model. The fractional order derivative demonstrates non-locality that makes it competent to deal with discontinuous information about edges and texture. The level set segmentation is carried on the flow field instead of images, which is a union of disjoint and independently moving regions such that each motion region contains objects of equal flow velocity. The resulting fractional order partial differential equations are numerically discretized using Grünwald–Letnikov fractional derivative. The nonlinear formulation is transformed into a linear system which is solved with the help of an efficient numerical technique. The results are evaluated by conducting experiments over a variety of datasets. The accuracy and efficiency of the propounded model is also depicted against recently published works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://visual.cs.ucl.ac.uk/pubs/flowconfidence/supp/index.html (2011)

  2. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011). https://doi.org/10.1007/s11263-010-0390-2

    Article  Google Scholar 

  3. Ballester, C., Garrido, L., Lazcano, V., Caselles, V.: A TV-L1 optical flow method with occlusion detection. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 31–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_4

    Chapter  Google Scholar 

  4. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  5. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  6. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: Conference on Computer Vision and Pattern Recognition, pp. 41–48 (2009)

    Google Scholar 

  7. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005). https://doi.org/10.1023/B:VISI.0000045324.43199.43

    Article  MATH  Google Scholar 

  8. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-2. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004). https://doi.org/10.1023/B:JMIV.0000011325.36760.1e

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, D., Sheng, H., Chen, Y., Xue, D.: Fractional-order variational optical flow model for motion estimation. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 371(1990), 20120148 (2013)

    Article  MATH  Google Scholar 

  11. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007). https://doi.org/10.1007/s11263-006-8711-1

    Article  Google Scholar 

  12. Dong, C.Z., Celik, O., Catbas, F.N., OŠBrien, E.J., Taylor, S.: Structural displacement monitoring using deep learning-based full field optical flow methods. Struct. Infrastruct. Eng. 16(1), 51–71 (2020)

    Google Scholar 

  13. Fang, N., Zhan, Z.: High-resolution optical flow and frame-recurrent network for video super-resolution and deblurring. Neurocomputing 489, 128–138 (2022)

    Article  Google Scholar 

  14. Ferrari, F.: Weyl and Marchaud derivatives: a forgotten history. Mathematics 6(1), 6 (2018)

    Article  MATH  Google Scholar 

  15. Galvin, B., McCane, B., Novins, K., Mason, D., Mills, S., et al.: Recovering motion fields: an evaluation of eight optical flow algorithms. In: BMVC, vol. 98, pp. 195–204 (1998)

    Google Scholar 

  16. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4th edn (2018)

    Google Scholar 

  17. Guan, L., et al.: Study on displacement estimation in low illumination environment through polarized contrast-enhanced optical flow method for polarization navigation applications. Optik 210, 164513 (2020)

    Article  Google Scholar 

  18. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  MATH  Google Scholar 

  19. Huang, H., et al.: Cloud motion estimation for short term solar irradiation prediction. In: International Conference on Smart Grid Communications, pp. 696–701 (2013)

    Google Scholar 

  20. Huang, Z., Pan, A.: Non-local weighted regularization for optical flow estimation. Optik 208, 164069 (2020)

    Article  Google Scholar 

  21. Jeon, M., Choi, H.S., Lee, J., Kang, M.: Multi-scale prediction for fire detection using convolutional neural network. Fire Technol. 57(5), 2533–2551 (2021). https://doi.org/10.1007/s10694-021-01132-y

    Article  Google Scholar 

  22. Khan, M., Kumar, P.: A nonlinear modeling of fractional order based variational model in optical flow estimation. Optik 261, 169136 (2022)

    Article  Google Scholar 

  23. Kumar, P., Khan, M., Gupta, S.: Development of an IR video surveillance system based on fractional order TV-model. In: 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS), pp. 1–7. IEEE (2021)

    Google Scholar 

  24. Kumar, P., Kumar, S.: A modified variational functional for estimating dense and discontinuity preserving optical flow in various spectrum. AEU-Int. J. Electron. Commun. 70(3), 289–300 (2016)

    Article  Google Scholar 

  25. Kumar, P., Kumar, S., Balasubramanian, R.: A fractional order total variation model for the estimation of optical flow. In: Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, pp. 1–4 (2015)

    Google Scholar 

  26. Kumar, P., Kumar, S., Balasubramanian, R.: A vision based motion estimation in underwater images. In: International Conference on Advances in Computing, Communications and Informatics, pp. 1179–1184 (2015)

    Google Scholar 

  27. Kumar, P., Raman, B.: Motion estimation from image sequences: a fractional order total variation model. In: Raman, B., Kumar, S., Roy, P.P., Sen, D. (eds.) Proceedings of International Conference on Computer Vision and Image Processing. AISC, vol. 460, pp. 297–307. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2107-7_27

    Chapter  Google Scholar 

  28. Lu, J., Yang, H., Zhang, Q., Yin, Z.: A field-segmentation-based variational optical flow method for PIV measurements of nonuniform flows. Exp. Fluids 60(9), 1–17 (2019). https://doi.org/10.1007/s00348-019-2787-1

    Article  Google Scholar 

  29. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: 7th International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  30. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover Publications (2012)

    Google Scholar 

  31. Marchaud, A.: Sur les dérivées et sur les différences des fonctions de variables réelles. J. de Mathématiques Pures et Appliquées 6, 337–426 (1927)

    MATH  Google Scholar 

  32. Miller, K.S.: Derivatives of noninteger order. Math. Mag. 68(3), 183–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993)

    Google Scholar 

  34. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 5, 565–593 (1986)

    Article  Google Scholar 

  35. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier (1974)

    Google Scholar 

  36. Otte, M., Nagel, H.-H.: Optical flow estimation: advances and comparisons. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 49–60. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57956-7_5

    Chapter  Google Scholar 

  37. Rao, S., Wang, H., Kashif, R., Rao, F.: Robust optical flow estimation to enhance behavioral research on ants. Digit. Sig. Process. 120, 103284 (2022)

    Article  Google Scholar 

  38. Rinsurongkawong, S., Ekpanyapong, M., Dailey, M.N.: Fire detection for early fire alarm based on optical flow video processing. In: 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1–4 (2012)

    Google Scholar 

  39. Schnorr, C.: Segmentation of visual motion by minimizing convex non-quadratic functionals. In: 12th International Conference on Pattern Recognition, vol. 1, pp. 661–663 (1994)

    Google Scholar 

  40. Senst, T., Eiselein, V., Sikora, T.: Robust local optical flow for feature tracking. IEEE Trans. Circ. Syst. Video Technol. 22(9), 1377–1387 (2012)

    Article  Google Scholar 

  41. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2432–2439 (2010)

    Google Scholar 

  42. Tu, Z., Poppe, R., Veltkamp, R.: Estimating accurate optical flow in the presence of motion blur. J. Electron. Imaging 24(5), 053018 (2015)

    Article  Google Scholar 

  43. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002). https://doi.org/10.1023/A:1020874308076

    Article  MATH  Google Scholar 

  44. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: BMVC, vol. 1, p. 3 (2009)

    Google Scholar 

  45. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  46. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vis. 93(3), 368–388 (2011). https://doi.org/10.1007/s11263-011-0422-6

    Article  MathSciNet  MATH  Google Scholar 

  47. Zimmer, H., et al.: Complementary optic flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 207–220. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03641-5_16

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors Pushpendra Kumar and Nitish Kumar Mahala acknowledge the support of NBHM, Mumbai for grant no. 02011/24/2021 NBHM (R.P)/ R &D- II/8669 and the author Muzammil Khan expresses gratitude to MHRD, New Delhi, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzammil Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P., Khan, M., Mahala, N.K. (2023). A Segmentation Based Robust Fractional Variational Model for Motion Estimation. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics