Skip to main content

Innovative Quantification of Critical Quality Attributes

  • Chapter
  • First Online:
Potency Assays for Advanced Stem Cell Therapy Medicinal Products

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1420))

  • 468 Accesses

Abstract

Potency testing is an important part of the evaluation of cellular therapy products. In vitro quantification of identified quality-related biomarkers is a technique often used at the laboratory. Nonetheless, the limited stability of most cellular therapy products, the lot variability and the limited time within which to perform testing are currently hindering their widespread use. Fortunately, within the last two decades, the evolution of material technology and miniaturisation processes has enabled the research community to shift the spotlight of attention towards the Lab-on-Chip concept for diagnostic applications. Such devices enable portable, rapid, sensitive, automated and affordable biochemical analyses aiming to advance the healthcare services across a broad application spectrum. However, it could be argued that the aspirations on their affordability are far from being exceeded, mainly due to the lack of a practical manufacturing technology. The Lab-on-Printed Circuit Board (Lab-on-PCB) approach has demonstrated enormous potential for developing economical diagnostic platforms leveraging the advantage provided by economy of scale manufacturing of the long-standing PCB industry. The integration capabilities that the PCB platform introduces to the Lab-on-Chip concept concerning the electronics and microfluidics seem to be unique. In this chapter, we will be reviewing the progress of Lab-on-PCB prototypes quantifying within miniaturised microchips a range of critical quality attributes with potential in potency testing. We will focus on their technology and applications whilst addressing the potential of this approach in practical use and commercialisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stroncek DF, Jin P, Wang E, Jett B (2007) Potency analysis of cellular therapies: the emerging role of molecular assays. J Transl Med 10:1–10. https://doi.org/10.1186/1479-5876-5-24

    Article  Google Scholar 

  2. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1:244–248

    Article  CAS  Google Scholar 

  3. Nikolelis DP, Varzakas T, Erdem A, Nikoleli G-P (2013) Portable biosensing of food toxicants and environmental pollutants, 1st edn. CRC Press. https://www.routledge.com/Portable-Biosensing-of-Food-Toxicants-and-Environmental-Pollutants/Nikolelis-Varzakas-Erdem-Nikoleli/p/book/9781466576322

    Book  Google Scholar 

  4. Moschou D, Trantidou T, Regoutz A, Carta D, Morgan H, Prodromakis T (2015) Surface and electrical characterization of Ag/AgCL pseudo-reference electrodes manufactured with commercially available PCB technologies. Sensors (Switzerland) 15:18102–18113. https://doi.org/10.3390/s150818102

    Article  CAS  Google Scholar 

  5. Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182. https://doi.org/10.1039/b820557b

    Article  CAS  PubMed  Google Scholar 

  6. Hermsen SA, Roszek B, van Drongelen AW, Geertsma RE (n.d.) Lab-on-a-chip devices for clinical diagnostics. RIVM report 080116001/2013

    Google Scholar 

  7. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:8–15. https://doi.org/10.1039/c3lc50169h

    Article  CAS  Google Scholar 

  8. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  9. Sher M, Zhuang R, Demirci U, Asghar W (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 17:351–366. https://doi.org/10.1080/14737159.2017.1285228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal K, Kraatz H-B, Khasnobish A, Bag S, Banerjee I, Kuruganti U (eds) (2019) Bioelectronics and medical devices, from materials to devices – fabrication, applications and reliability, 1st edn. Woodhead Publishing

    Google Scholar 

  11. Asia Circuits (n.d.). https://www.asiacircuits.com/. Accessed 10 May 2020

  12. PCBOnestop (n.d.). https://www.pcbonestop.com/custom-pcb/100-layers-dobolue-side-crimping-backplane.html. Accessed 10 May 2020

  13. Guo J, Li CM, Kang Y (2014) PDMS-film coated on PCB for AC impedance sensing of biological cells. Biomed Microdevices 16:681–686. https://doi.org/10.1007/s10544-014-9872-2

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen X, Huang N-T (2000) High-performance micropumps based on printed circuit board technology. Proc SPIE 4177:249–256. https://doi.org/10.1117/12.395669

    Article  Google Scholar 

  15. Wu LL, Babikian S, Li G, Bachman M (2011) Microfluidic printed circuit boards. In: Proceedings – electronic components and technology conference. IEEE, pp 1576–1581. https://doi.org/10.1109/ECTC.2011.5898721

    Chapter  Google Scholar 

  16. Lammerink TS, Spiering V, Elwenspoek M, Fluitman JH, van den Berg A (1996) Modular concept for fluid handling systems. In: Proceedings of Ninth International Workshop on Micro Electromechanical Systems. IEEE, pp 389–394. https://doi.org/10.1109/MEMSYS.1996.494013

    Chapter  Google Scholar 

  17. Jobst G, Moser I, Svasek P, Varahram M, Trajanoski Z, Wach P (1997) Mass producible miniaturized flow through a device with a biosensor array. Sens Actuators B Chem 43:121–125

    Article  CAS  Google Scholar 

  18. Petrou PS, Moser I, Jobst G (2002) BioMEMS device with integrated microdialysis probe and biosensor array. Biosens Bioelectron 17:859–865

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen N, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sens Actuators A Phys 88:104–111

    Article  CAS  Google Scholar 

  20. Merkel T, Graeber M, Pagel L (1999) A new technology for fluidic microsystems based on PCB technology. Sens Actuators A Phys 77:98–105

    Article  CAS  Google Scholar 

  21. Wego A, Pagel L (2001) A self-flling micropump based on PCB technology. Sens Actuators A Phys 88:220–226

    Article  CAS  Google Scholar 

  22. Wego A, Richter S, Pagel L (2001) Fluidic microsystems based on printed circuit board technology. J Micromech Microeng 11:528

    Article  CAS  Google Scholar 

  23. Gong J, Kim C (2008) Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. J Microelectromech Syst 17:257–264

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pittet P, Lu G, Galvan J, Ferrigno R, Blum LJ, Leca-bouvier BD (2008) PCB technology-based electrochemiluminescence analytical systems. IEEE Sens J 8:565–571

    Article  CAS  Google Scholar 

  25. Gassmann S, Trozjuk A, Singhal J, Miranda ML, Zielinski O (2015) PCB based micro fluidic system for thermal cycling of seawater samples. In: 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, pp 3365–3369

    Chapter  Google Scholar 

  26. Ortiz P, Keegan N, Spoors J, Hedley J, Harris A, Burdess J, Velten T, Biehl M, Knoll T, Haberer W, Solomon M (2008) A hybrid MEMS-based microfluidic system for cancer diagnosis. IEEE Biomed Circuits Syst Conf 7270:1–8. https://doi.org/10.1117/12.810010

    Article  Google Scholar 

  27. Kontakis K, Petropoulos A, Kaltsas G (2009) A novel microfluidic integration technology for PCB-based devices: application to microflow sensing. Microelectron Eng 86:1382–1384. https://doi.org/10.1016/j.mee.2009.01.088

    Article  CAS  Google Scholar 

  28. Wu A, Wang L, Jensen E, Boser B (2010) Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 10:519–521. https://doi.org/10.1039/b922830f

    Article  CAS  PubMed  Google Scholar 

  29. Luque A, Perdigones F, Aracil C (2012) Fabrication of electroosmotic micropump using PCB and SU-8. In: IEEE Industrial Electronics Society. IEEE, pp 3958–3961

    Google Scholar 

  30. Gassmann S, Luque A, Perdigones F, Quero JM (2013) Sensor structures generated with combination of SU8 and PCBMEMS. In: Proceedings of the 39th annual conference of the IEEE Industrial Electronics Society, IECON 2013. IEEE, pp 108–112

    Chapter  Google Scholar 

  31. Burdallo I, Fern C (2012) Integration of microelectronic chips in microfluidic systems on printed circuit board. J Micromech Microeng 22:105022. https://doi.org/10.1088/0960-1317/22/10/105022

    Article  Google Scholar 

  32. Tseng H, Lum J, Malfesi S, Gray BL (2015) Development of rapid screening for glucose-6-phosphate dehydrogenase deficiency prior to malaria treatment utilizing on-board pH-based electrochemical assay. Measurement 73:158–161. https://doi.org/10.1016/j.measurement.2015.05.012

    Article  Google Scholar 

  33. Moschou D, Tserepi A (2017) The lab-on-PCB approach: tackling the μTAS commercial upscaling bottleneck. Lab Chip 17:1388–1405. https://doi.org/10.1039/c7lc00121e

    Article  CAS  PubMed  Google Scholar 

  34. Wu LL, Marshall LA, Babikian S, Han CM, Santiago JG, Bachman M (2011) A printed circuit board based micrfluidic system for pint-of-care diagnostics applications. In: Proceedings of the 15th international conference on miniaturized systems for chemistry and life sciences. Chemical and Biological Microsystems Society, pp 1819–1821

    Google Scholar 

  35. Guijt RM, Armstrong JP, Candish E, Lefleur V, Percey WJ, Shabala S, Hauser PC, Breadmore MC (2011) Microfluidic chips for capillary electrophoresis with integrated electrodes for capacitively coupled conductivity detection based on printed circuit board technology. Sensors Actuators B Chem 159:307–313. https://doi.org/10.1016/j.snb.2011.06.023

    Article  CAS  Google Scholar 

  36. Franco E, Salvador B, Perdigones F, Cabello M, Quero JM (2018) Fabrication method of lab-on-PCB devices using a microheater with a thermo-mechanical barrier. Microelectron Eng 194:31–39. https://doi.org/10.1016/j.mee.2018.02.019

    Article  CAS  Google Scholar 

  37. Perdigones F, Quero JM (2019) Physical highly integrable and normally open microvalve for industrial thermoplastic-based lab on PCB. Sensors Actuators A Phys 300:111639. https://doi.org/10.1016/j.sna.2019.111639

    Article  CAS  Google Scholar 

  38. Marshall LA, Wu LL, Babikian S, Bachman M, Santiago JG (2012) Integrated printed circuit board device for cell lysis and nucleic acid extraction. Anal Chem 84:9640–9645

    Article  CAS  PubMed  Google Scholar 

  39. Marshall LA, Han CM, Santiago JG (2011) Extraction of DNA from malaria-infected erythrocytes using isotachophoresis. Anal Chem 83:9715–9718

    Article  CAS  PubMed  Google Scholar 

  40. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    Article  CAS  PubMed  Google Scholar 

  41. Moschou D, Vourdas N, Kokkoris G, Tsekenis G, Tsouti V, Zergioti I, Tserepi A (2012) Fabrication of a label-free micromechanical capacitive biosensor and integration with μPCR towards a LoC for disease diagnosis. In: Proceedings of the 16th international conference on miniaturized systems for chemistry and life sciences (MicroTAS), 2012. Chemical and Biological Microsystems Society, pp 1804–1806

    Google Scholar 

  42. Moschou D, Vourdas N, Filippidou MK, Tsouti V, Kokkoris G, Tsekenis G, Zergioti I (2013) Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors. Proc SPIE 8765:1–9. https://doi.org/10.1117/12.2017690

    Article  CAS  Google Scholar 

  43. Mavraki E, Moschou D, Kokkoris G, Vourdas N, Chatzandroulis S (2011) A continuous flow μPCR device with integrated microheaters on a flexible polyimide substrate. Procedia Eng 25:1245–1248. https://doi.org/10.1016/j.proeng.2011.12.307

    Article  CAS  Google Scholar 

  44. Moschou D, Vourdas N, Kokkoris G, Papadakis G, Parthenios J, Chatzandroulis S, Tserepi A (2014) All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sensors Actuators B Chem 199:470–478. https://doi.org/10.1016/j.snb.2014.04.007

    Article  CAS  Google Scholar 

  45. Kaprou GD, Papadopoulos V, Papageorgiou DP, Kefala I, Papadakis G, Gizeli E, Chatzandroulis S, Kokkoris G, Tserepi A (2019) Ultrafast, low-power, PCB manufacturable, continuous-flow microdevice for DNA amplification. Anal Bioanal Chem 411:5297–5307

    Article  CAS  PubMed  Google Scholar 

  46. Kaprou G, Papadakis G, Kokkoris G, Papadopoulos V, Kefala I, Papageorgiou D, Gizeli E, Tserepi A (2015) Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics. Proc SPIE 9518:1–8. https://doi.org/10.1117/12.2181953

    Article  Google Scholar 

  47. Kaprou GD, Papadopoulos V, Loukas CM, Kokkoris G (2020) Towards PCB-based miniaturized thermocyclers for DNA amplification. Micromachines (Basel) 11:258. https://doi.org/10.3390/mi11030258

    Article  PubMed  Google Scholar 

  48. Tseng AH, Adamik V, Parsons J, Scott SL, Jenny M, Lesley L, Gray B (2014) Development of an electrochemical biosensor array for quantitative polymerase chain reaction utilizing three-metal printed circuit board technology. Sensors Actuators B Chem 204:459–466. https://doi.org/10.1016/j.snb.2014.07.123

    Article  CAS  Google Scholar 

  49. Diaz-Diaz IA, Campos-Canton E (2018) Design of an electrowetting biosensor prototype controlling microfluidic droplet movement for isothermal nucleic acid amplification assays. In: 2018 IEEE international autumn meeting on power, electronics and computing. IEEE, pp 1–4

    Google Scholar 

  50. Li X, Zang J, Liu Y, Lu Z, Li Q, Ming C (2013) Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip. Anal Chim Acta 771:102–107. https://doi.org/10.1016/j.aca.2013.02.011

    Article  CAS  PubMed  Google Scholar 

  51. Pu Z, Wang R, Wu J, Yu H, Xu K, Li D (2016) A flexible electrochemical glucose sensor with composite nanostructured surface of the working electrode. Elsevier B.V. https://doi.org/10.1016/j.snb.2016.02.115

    Book  Google Scholar 

  52. Jacobs M, Muthukumar S, Panneer A, Engel J, Prasad S (2014) Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin fi lms on printed circuit board platforms. Biosens Bioelectron 55:7–13. https://doi.org/10.1016/j.bios.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  53. Moreira FTC, Ferreira MJMS, Puga JRT, Sales MGF (2016) Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sens Actuators B Chem 223:927–935. https://doi.org/10.1016/j.snb.2015.09.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi D, Guo J, Chen L, Xia C, Yu Z, Ai Y (2015) Differential microfluidic sensor on PCB for biological cells analysis. Electrophoresis 36:1854–1858. https://doi.org/10.1002/elps.201400524

    Article  CAS  PubMed  Google Scholar 

  55. Fu Y, Yuan Q, Guo J (2017) Lab-on-PCB-based micro-cytometer for circulating tumor cells detection and enumeration. In: Microfluidics and nanofluidics. Springer-Verlag, Berlin, Heidelberg, pp 1–4. https://doi.org/10.1007/s10404-017-1854-2

    Chapter  Google Scholar 

  56. Acero Sánchez JL, Henry OYF, Joda H, Werne Solnestam B, Kvastad L, Johansson E, Akan P, Lundeberg J, Lladach N, Ramakrishnan D, Riley I (2016) Multiplex PCB-based electrochemical detection of cancer biomarkers using MLPA-barcode approach. Biosens Bioelectron 82:224–232. https://doi.org/10.1016/j.bios.2016.04.018

    Article  CAS  Google Scholar 

  57. Jolly P, Rainbow J, Regoutz A, Estrela P, Moschou D (2018) A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification. Biosens Bioelectron 123:244–250. https://doi.org/10.1016/j.bios.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  58. Moschou D, Greathead L, Pantelidis P, Kelleher P, Morgan H, Prodromakis T (2016) Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes. Biosens Bioelectron 86:805–810. https://doi.org/10.1016/j.bios.2016.07.075

    Article  CAS  PubMed  Google Scholar 

  59. Evans D, Papadimitriou KI, Vasilakis N, Pantelidis P, Kelleher P, Morgan H, Prodromakis T (2018) A novel microfluidic point-of-care biosensor system on printed circuit board for cytokine detection. Sensors (Basel) 18:1–14. https://doi.org/10.3390/s18114011

    Article  CAS  Google Scholar 

  60. Morgan H, Prodromakis T, Moschou D (2016) A PCB-based electrochemical glucose biosensing platform. In: ΜTAS 2016, pp 3–4. https://doi.org/10.1089/jpm.2007.9828

  61. Vasilakis N, Moschou D, Carta D, Morgan H (2016) Long-lasting FR-4 surface hydrophilisation towards commercial PCB passive microfluidics. Appl Surf Sci 368:69–75. https://doi.org/10.1016/j.apsusc.2015.12.123

    Article  CAS  Google Scholar 

  62. Evans D, Papadimitriou KI, Greathead L, Vasilakis N, Pantelidis P, Kelleher P, Morgan H, Prodromakis T (2017) An assay system for point-of-care diagnosis of tuberculosis using commercially manufactured PCB technology. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-00783-8

    Article  CAS  Google Scholar 

  63. Leiterer C, Urban M, Fritzsche W (2015) Printed circuit boards as platform for disposable lab-on-a-chip applications. Proc SPIE 9668:8–13. https://doi.org/10.1117/12.2202413

    Article  Google Scholar 

  64. Cabello M, Aracil C (2018) Lab-on-PCB: low cost 3D microelectrode array device for extracellular recordings. In: 2018 Spanish conference on electron devices (CDE). IEEE, pp 8–11

    Google Scholar 

  65. Ren C, Zhang S, Song D, Guo J (2016) Lab on dielectric film deposited PCB device for characterization of electrical property of biological cells. IEEE Trans Dielectr Electr Insul 23:1895–1897. https://doi.org/10.1109/TDEI.2016.005284

    Article  CAS  Google Scholar 

  66. Aracil C, Perdigones F, Moreno JM, Luque A, Quero JM (2015) Portable Lab-on-PCB platform for autonomous micromixing. Microelectron Eng 131:13–18. https://doi.org/10.1016/j.mee.2014.10.018

    Article  CAS  Google Scholar 

  67. Mikhaylov R, Wu F, Wang H, Clayton A, Sun C (2020) Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB†. Lab Chip 20:1807–1814. https://doi.org/10.1039/c9lc01192g

    Article  CAS  PubMed  Google Scholar 

  68. Dong E, Chen H, Li J, Wang Y (2014) USB-driven microfluidic chips on printed circuit boards. Lab Chip 14:860–864. https://doi.org/10.1039/c3lc51155c

    Article  CAS  PubMed  Google Scholar 

  69. Flores G, Aracil C, Perdigones F, Quero JM (2018) Lab-protocol-on-PCB: prototype of a laboratory protocol on printed circuit board using MEMS technologies. Microelectron Eng 200:26–31. https://doi.org/10.1016/j.mee.2018.08.003

    Article  CAS  Google Scholar 

  70. Kim AH, Hwang H, Baek S, Kim D (2018) Design, fabrication, and performance evaluation of a printed-circuit-board microfluidic electrolytic pump for lab-on-a-chip devices. Sensors Actuators A Phys 277:73–84. https://doi.org/10.1016/j.sna.2018.04.042

    Article  CAS  Google Scholar 

  71. Quoc TV, Dac HN, Quoc TP (2014) A printed circuit board capacitive sensor for air bubble inside fluidic flow detection. Microsyst Technol 21:1–8. https://doi.org/10.1007/s00542-014-2141-8

    Article  CAS  Google Scholar 

  72. Flores G, Aracil C, Perdigones F, Quero JM (2014) Low consumption single-use microvalve for microfluidic PCB-based platforms. J Micromech Microeng 24:065013. https://doi.org/10.1088/0960-1317/24/6/065013

    Article  CAS  Google Scholar 

  73. Haci D, Liu Y, Nikolic K, Demarchi D, Constandinou TG, Georgiou P (2018) Thermally controlled Lab-on-PCB for biomedical applications. In: 2018 IEEE Biomedical Circuits and Systems Conference. IEEE, pp 1–4. https://doi.org/10.1109/BIOCAS.2018.8584664

    Chapter  Google Scholar 

  74. Cabello M, Aracil C, Perdigones F, Quero JM, Member S (2017) Conditioning lab on PCB to control temperature and mix fluids at the microscale for biomedical applications. In: 2017 Spanish conference on electron devices (CDE). IEEE, pp 1–4

    Google Scholar 

  75. Alhans R, Singh A, Singhal C, Narang J, Wadhwa S (2018) Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards. Mater Sci Eng C 90:273–279. https://doi.org/10.1016/j.msec.2018.04.072

    Article  CAS  Google Scholar 

  76. Kassanos P, Anastasova S, Yang G (2018) A low-cost amperometric glucose sensor based on PCB technology. In: 2018 IEEE SENSORS. IEEE, pp 1–4

    Google Scholar 

  77. Shen K, Chen X, Guo M, Cheng J (2005) A microchip-based PCR device using flexible printed circuit technology. Sensors Actuators B Chem 105:251–258. https://doi.org/10.1016/j.snb.2004.05.069

    Article  CAS  Google Scholar 

  78. Narakathu BB, Member S, Guruva S, Avuthu R, Member S (2015) Development of a microfluidic sensing platform by integrating PCB technology and inkjet printing process. IEEE Sens J 15:6374–6380

    Article  CAS  Google Scholar 

  79. Luo J, Simon MG, Jiang AYL, Nelson EL, Lee AP, Li G-P, Bachman M (2016) 3-D In-Bi-Sn electrodes for Lab-on-PCB cell sorting. IEEE Trans Compon Packag Manuf Technol 6:1295–1300

    Article  CAS  Google Scholar 

  80. Vasilakis KIP, Evans ND, Morgan H, Prodromakis T (2016) The Lab-on-PCB framework for affordable, electronic-based point-of-care diagnostics: from design to manufacturing. In: 2016 IEEE healthcare innovation point-of-care technologies conference (HI-POCT). IEEE, pp 126–129

    Chapter  Google Scholar 

  81. Ghanim MH, Abdullah MZ (2013) Design of disposable DNA biosensor microchip with amperometric detection featuring PCB substrate. BioChip J 7:51–56. https://doi.org/10.1007/s13206-013-7108-9

    Article  CAS  Google Scholar 

  82. Papamatthaiou S, Estrela P, Moschou D (2019) PCB-implemented graphene electrolyte-gated field-effect transistors for biosensing applications. In: Proceedings of the 23rd international conference on miniaturized systems for chemistry and life sciences (μTAS 2019). Chemical and Biological Microsystems Society, pp 1172–1173

    Google Scholar 

  83. Vasilakis N, Papadimitriou KI, Morgan H, Prodromakis T (2017) High-performance PCB-based capillary pumps for affordable point-of-care diagnostics. Microfluid Nanofluidics 21:1–11. https://doi.org/10.1007/s10404-017-1935-2

    Article  Google Scholar 

  84. C3Bio, C3Bio YouTube Channel (2019). https://www.youtube.com/channel/UCB91_SEjJv7swM0TmlcgmgA. Accessed 6 May 2020

  85. Moschou D (2019) Challenges in the design of Lab-on-PCB platforms. https://www.altium.com/live-conference/munich

  86. Papamatthaiou S, Estrela P, Moschou D (2021) Printable graphene BioFETs for DNA quantification in Lab-on-PCB microsystems. Sci Rep 11:1–9. https://doi.org/10.1038/s41598-021-89367-1

    Article  CAS  Google Scholar 

  87. Amǎrandi RM, Becheru DF, Vlǎsceanu GM, Ioniǎ M, Burns JS (2018) Advantages of graphene biosensors for human stem cell therapy potency assays. Biomed Res Int 2018:1676851. https://doi.org/10.1155/2018/1676851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina Moschou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papamatthaiou, S., Moschou, D. (2023). Innovative Quantification of Critical Quality Attributes. In: Burns, J.S. (eds) Potency Assays for Advanced Stem Cell Therapy Medicinal Products. Advances in Experimental Medicine and Biology, vol 1420. Springer, Cham. https://doi.org/10.1007/978-3-031-30040-0_7

Download citation

Publish with us

Policies and ethics