Skip to main content

Fabric Sketch Augmentation & Styling via Deep Learning & Image Synthesis

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2023)

Abstract

This paper introduces a two-fold methodology of creating fabric designs and patterns, using both traditional object detection and Deep Learning methodologies. The proposed methodology first augments a given partial sketch, which is taken as an input from the user. This sketch augmentation is performed through a combination of object detection, canvas quilting, and seamless tiling, to achieve a repeatable block of a pattern. This augmented pattern is then carried forward as an input to our variation of the pix2pix GAN, which outputs a styled and colored pattern using the sketch as a baseline. This design pipeline is an overall overhaul of the creative process of a textile designer, and is intended to provide assistance in the design of modern textiles in the industry by reducing the time from going to a sketch to a pattern in under a minute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, Z.: Research report on Pakistan’s textile industry analysis. SSRN Electron. J. (2009). https://doi.org/10.2139/ssrn.1651789

    Article  Google Scholar 

  2. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986). https://doi.org/10.1109/tpami.1986.4767851

  3. Chen, W., Hays, J.: SketchyGAN: towards diverse and realistic sketch to image synthesis. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9416–9425. Salt Lake City, UT, USA (2018). https://doi.org/10.1109/CVPR.2018.00981

  4. Dougherty, E.R.: An introduction to morphological image processing. SPIE-Int. Soc. Opt. Eng. (1992)

    Google Scholar 

  5. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1033–1038. IEEE, Kerkyra (1999). https://doi.org/10.1109/ICCV.1999.790383

  6. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH 2001, pp. 341–346. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/383259.383296

  7. Fan, L., Krone, J., Woolf, S.: Sketch to image translation using GANs - LISA.FAN. https://lisa.fan/Resources/SketchGAN/sketch-image-translation.pdf. Accessed 25 Jan 2023

  8. github-actions: rtmigo/img2texture: Cli for converting images to seamless tiles (2021). https://github.com/rtmigo/img2texture_py. Accessed 22 May 2022

  9. Gao, C., Liu, Q., Xu, Q., Wang, L., Liu, J., Zou, C.: SketchyCOCO: image generation from freehand scene sketches. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5173–5182. IEEE, Seattle (2020). https://doi.org/10.1109/CVPR42600.2020.00522

  10. Gupta, K., Damani, S., Narahari, K.N.: Using AI to design stone jewelry, November 2018. https://doi.org/10.48550/arXiv.1801.00723. Accessed 3 Feb 2023

  11. Hu, M., Guo, J.: Facial attribute-controlled sketch-to-image translation with generative adversarial networks. EURASIP J. Image Video Process. 2020(1), 1–13 (2020)

    Article  Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976. IEEE, Honolulu (2017). https://doi.org/10.1109/CVPR.2017.632

  13. Karimi, P., Davis, N., Grace, K., Maher, M.L.: Deep learning for identifying potential conceptual shifts for co-creative drawing (2018). https://doi.org/10.48550/ARXIV.1801.00723. Accessed 27 Jan 2023

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980. Accessed 3 Feb 2023

  15. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001). https://doi.org/10.1145/501786.501787

    Article  Google Scholar 

  16. Moravec, J.: A comparative study: L1-norm vs. l2-norm; point-to-point vs. point-to-line metric; evolutionary computation vs. gradient search. Appl. Artif. Intell. 29(2), 164–210 (2015). https://doi.org/10.1080/08839514.2015.993560

  17. Park, T., Zhu, J.Y., Wang, O., Lu, J., Shechtman, E., Efros, A.A., Zhang, R.: Swapping autoencoder for deep image manipulation. In: Advances in Neural Information Processing Systems. Curran Associates Inc., Red Hook (2020). https://doi.org/10.48550/arXiv.2007.00653

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR 2015), pp. 1–14. Computational and Biological Learning Society, San Diego (2015). https://doi.org/10.3390/electronics10040497

  20. Tian, N., Liu, Y., Wu, B., Li, X.: Colorization of logo sketch based on conditional generative adversarial networks. Electronics 10(4) (2021). https://doi.org/10.3390/electronics10040497

  21. Xing, J., Wei, L.Y., Shiratori, T., Yatani, K.: Autocomplete hand-drawn animations. ACM Trans. Graph. 34(6) (2015). https://doi.org/10.1145/2816795.2818079

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Salman Abid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, O., Abid, M.S., Junaid, A., Raza, S.S. (2023). Fabric Sketch Augmentation & Styling via Deep Learning & Image Synthesis. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2023. Lecture Notes in Computer Science, vol 13988. Springer, Cham. https://doi.org/10.1007/978-3-031-29956-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29956-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29955-1

  • Online ISBN: 978-3-031-29956-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics