Skip to main content

Brain’s Dynamic Functional Organization with Simultaneous EEG-fMRI Networks

  • Conference paper
  • First Online:
Complex Networks XIV (CompleNet 2023)

Abstract

The brain’s functional networks can be assessed using imaging techniques like functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Recent studies have suggested a link between the dynamic functional connectivity (dFC) captured by these two modalities, but the exact relationship between their spatiotemporal organization is still unclear. Since these networks are spatially embedded, a question arises whether the topological features captured can be explained exclusively by the spatial constraints. We investigated the global structure of resting-state EEG and fMRI data, including a spatially informed null model and found that fMRI networks are more modular over time, in comparison to EEG, which captured a less clustered topology. This resulted in overall low similarity values. However, when investigating the community structure beyond spatial constraints, this similarity decreased. We show that even though EEG and fMRI functional connectomes are slightly linked, the two modalities essentially capture different information over time, with most but not all topology being explained by the underlying spatial embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/juanitacabral/LEiDA.

  2. 2.

    http://neuroimage.usc.edu/brainstorm.

  3. 3.

    https://github.com/compneuro-da/rsHRF.

  4. 4.

    https://github.com/Yquetzal/spaceCorrectedLouvainDC.

References

  1. Abreu, R., Jorge, J., Leal, A., Koenig, T., Figueiredo, P.: EEG microstates predict concurrent fMRI dynamic functional connectivity states. Brain Topogr. 34(1), 41–55 (2020). https://doi.org/10.1007/s10548-020-00805-1

    Article  Google Scholar 

  2. Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001). https://doi.org/10.1109/79.962275

    Article  ADS  Google Scholar 

  3. Bassett, D.S., Stiso, J.: Spatial brain networks. C R Phys. 19(4), 253–264 (2018). https://doi.org/10.1016/j.crhy.2018.09.006

    Article  ADS  Google Scholar 

  4. Betzel, R.F., Byrge, L., Esfahlani, F.Z., Kennedy, D.P.: Temporal fluctuations in the brain’s modular architecture during movie-watching. Neuroimage 213, 116687 (2020). https://doi.org/10.1016/j.neuroimage.2020.116687

    Article  Google Scholar 

  5. Betzel, R.F., Fukushima, M., He, Y., Zuo, X.N., Sporns, O.: Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks. Neuroimage 127, 287–297 (2016). https://doi.org/10.1016/j.neuroimage.2015.12.001

    Article  Google Scholar 

  6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  MATH  Google Scholar 

  7. Bordier, C., Nicolini, C., Bifone, A.: Graph analysis and modularity of brain functional connectivity networks: Searching for the optimal threshold. Front. Neurosci. 11, 441 (2017). https://doi.org/10.3389/fnins.2017.00441

    Article  Google Scholar 

  8. Bréchet, L., Brunet, D., Birot, G., Gruetter, R., Michel, C.M., Jorge, J.: Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage 194, 82–92 (2019). https://doi.org/10.1016/j.neuroimage.2019.03.029

    Article  Google Scholar 

  9. Bullmore, E., Sporns, O.: Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009). https://doi.org/10.1038/nrn2575

    Article  Google Scholar 

  10. Cabral, J., et al.: Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 7, 5135 (2017). https://doi.org/10.1038/s41598-017-05425-7

    Article  ADS  Google Scholar 

  11. Cazabet, R., Borgnat, P., Jensen, P.: Enhancing space-aware community detection using degree constrained spatial null model. In: Gonçalves, B., Menezes, R., Sinatra, R., Zlatic, V. (eds.) CompleNet 2017. SPC, pp. 47–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54241-6_4

    Chapter  Google Scholar 

  12. Custo, A., Van De Ville, D., Wells, W.M., Tomescu, M.I., Brunet, D., Michel, C.M.: Electroencephalographic Resting-State Networks: Source Localization of Microstates. Brain Connect. 7(10), 671–682 (2017). https://doi.org/10.1089/brain.2016.0476

    Article  Google Scholar 

  13. Deligianni, F., Centeno, M., Carmichael, D.W., Clayden, J.D.: Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands. Front. Neurosci. 8(258) (2014). https://doi.org/10.3389/fnins.2014.00258

  14. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into Gyral based regions of interest. Neuroimage 31(3), 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  Google Scholar 

  15. Dimitriadis, S., Laskaris, N., Tsirka, V., Vourkas, M., Sifis, M.: An EEG study of brain connectivity dynamics at the resting state. Nonlinear Dyn. Psychol. Life Sci. 16(1), 5–22 (2012)

    Google Scholar 

  16. Esfahlani, F.Z., Bertolero, M.A., Bassett, D.S., Betzel, R.F.: Space-independent community and hub structure of functional brain networks. Neuroimage 211, 116612 (2020). https://doi.org/10.1016/j.neuroimage.2020.116612

    Article  Google Scholar 

  17. Farahibozorg, S.R., Henson, R.N., Hauk, O.: Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes. Neuroimage 169, 23–45 (2018). https://doi.org/10.1016/j.neuroimage.2017.09.009

    Article  Google Scholar 

  18. Fukushima, M., Sporns, O.: Comparison of fluctuations in global network topology of modeled and empirical brain functional connectivity. PLoS Comput. Biol. 14(9), e1006497 (2018). https://doi.org/10.1371/journal.pcbi.1006497

    Article  ADS  Google Scholar 

  19. van den Heuvel, M.P., Hulshoff Pol, H.E.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010). https://doi.org/10.1016/j.euroneuro.2010.03.008

    Article  Google Scholar 

  20. Jorge, J., Bouloc, C., Bréchet, L., Michel, C.M., Gruetter, R.: Investigating the variability of cardiac pulse artifacts across heartbeats in simultaneous EEG-fMRI recordings: a. Neuroimage 191, 21–35 (2019). https://doi.org/10.1016/j.neuroimage.2019.02.021

    Article  Google Scholar 

  21. Lewin, J.S.: Functional MRI: an introduction to methods. J. Magn. Reson. Imaging 17(3), 383–383 (2003). https://doi.org/10.1002/jmri.10284

    Article  Google Scholar 

  22. Lopes da Silva, F.: EEG and MEG: relevance to neuroscience. Neuron 80(5), 1112–1128 (2013). https://doi.org/10.1016/j.neuron.2013.10.017

  23. Mahjoory, K., Nikulin, V.V., Botrel, L., Linkenkaer-Hansen, K., Fato, M.M., Haufe, S.: Consistency of EEG source localization and connectivity estimates. Neuroimage 152, 590–601 (2017). https://doi.org/10.1016/j.neuroimage.2017.02.076

    Article  Google Scholar 

  24. Mele, G., Cavaliere, C., Alfano, V., Orsini, M., Salvatore, M., Aiello, M.: Simultaneous EEG-fMRI for functional neurological assessment. Front. Neurol. 10 (2019). https://doi.org/10.3389/fneur.2019.00848

  25. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010). https://doi.org/10.1126/science.1184819

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Nentwich, M., et al.: Functional connectivity of EEG is subject-specific, associated with phenotype, and different from fMRI. Neuroimage 218, 117001 (2020). https://doi.org/10.1016/j.neuroimage.2020.117001

    Article  Google Scholar 

  27. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115(10), 2292–2307 (2004). https://doi.org/10.1016/j.clinph.2004.04.029

    Article  Google Scholar 

  28. Poldrack, R.A., Nichols, T., Mumford, J.: Handbook of Functional MRI Data Analysis. Cambridge University Press (2011). https://doi.org/10.1017/cbo9780511895029

  29. Preti, M.G., Bolton, T.A., Van De Ville, D.: The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage 160, 41–54 (2017). https://doi.org/10.1016/j.neuroimage.2016.12.061

    Article  Google Scholar 

  30. Puxeddu, M.G., Petti, M., Pichiorri, F., Cincotti, F., Mattia, D., Astolfi, L.: Community detection: comparison among clustering algorithms and application to EEG-based brain networks. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 3965–3968 (2017). https://doi.org/10.1109/EMBC.2017.8037724

  31. Roberts, J.A., et al.: The contribution of geometry to the human connectome. NeuroImage 124(PtA), 379–393 (2016). https://doi.org/10.1016/j.neuroimage.2015.09.009

  32. Samu, D., Seth, A.K., Nowotny, T.: Influence of wiring cost on the large-scale architecture of human cortical connectivity. PLoS Comput. Biol. 10(4), e1003557 (2014). https://doi.org/10.1371/journal.pcbi.1003557

    Article  ADS  Google Scholar 

  33. Wirsich, J., Amico, E., Giraud, A.L., Goñi, J., Sadaghiani, S.: Multi-timescale hybrid components of the functional brain connectome: A bimodal EEG-fMRI decomposition. Network Neurosci. 4(3), 658–677 (2020). https://doi.org/10.1162/netn_a_00135

  34. Wirsich, J., Giraud, A.L., Sadaghiani, S.: Concurrent EEG- and fMRI-derived functional connectomes exhibit linked dynamics. Neuroimage 219, 116998 (2020). https://doi.org/10.1016/j.neuroimage.2020.116998

    Article  Google Scholar 

  35. Wirsich, J., et al.: The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5t to 7t. NeuroImage 231, 117864 (2021). https://doi.org/10.1016/j.neuroimage.2021.117864

  36. Wirsich, J.: Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity. Neuroimage 161, 251–260 (2017). https://doi.org/10.1016/j.neuroimage.2017.08.055

    Article  Google Scholar 

  37. Wu, G.R., Liao, W., Stramaglia, S., Ding, J.R., Chen, H., Marinazzo, D.: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal. 17(3), 365–374 (2013). https://doi.org/10.1016/j.media.2013.01.003

    Article  Google Scholar 

  38. Yu, Q., et al.: Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study. Front. Hum. Neurosci. 10, 476 (2016). https://doi.org/10.3389/fnhum.2016.00476

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by national funds through FCT – Fundação para a Ciência e Tecnologia, under grant UIDB/50021/2020 and UIDP/50009/2020. AST acknowledges support by the FCT through the LASIGE Research Unit, ref. UIDB/00408/2020 and ref. UIDP/ 00408/2020. APF acknowledges support by FCT through ref. UIDB/50021/2020. PF acknowledges support by FCT through LARSyS, ref. UDIP/50009/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Ayres-Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayres-Ribeiro, F. et al. (2023). Brain’s Dynamic Functional Organization with Simultaneous EEG-fMRI Networks. In: Teixeira, A.S., Botta, F., Mendes, J.F., Menezes, R., Mangioni, G. (eds) Complex Networks XIV. CompleNet 2023. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-28276-8_1

Download citation

Publish with us

Policies and ethics