Skip to main content

Dynamic Data-Driven Sensor Tasking with Applications in Space and Aerospace Systems

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

This chapter discusses the Dynamic Data-Driven Applications Systems (DDDAS)-based mathematical approaches associated with the problem of managing a network of static and dynamic sensors to accurately characterize complex dynamical environments. Examples of sensor-network management include assigning a set of sensors for surveillance and tracking multiple ground/aerial/marine targets. Further examples include adaptive sensing of large-scale spatial phenomena such as weather, volcanic eruptions, and pollutants in air or large water bodies. By using information theoretic measures of sensor performance and the value of information predicted by the models, the formulation of optimally tasking a group of sensors to maximize mutual information is detailed. The resulting sensor-tasking optimization problem is shown to be combinatorial in nature, and its computational complexity expands with an increasing number of targets and sensors. Appropriate suboptimal approximations are presented to alleviate this computational complexity of the sensor-tasking problem. The submodular property of the mutual information measure is utilized to provide guarantees on the optimality of different approximations. Numerical simulations involve tracking of aerial and space objects with ground-based sensors and marine objects with sensors mounted on unmanned aerial vehicles. These simulations showcase the efficacy of optimizing the configurations of a limited number of sensor agents to better track multiple noncooperative targets.

This chapter is derived from our earlier publication [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adurthi N (2016) Conjugate unscented transform based methods for uncertainty quantification, nonlinear filtering, optimal feedback control and dynamic sensing. Dissertation, State University of New York at Buffalo, Buffalo, NY

    Google Scholar 

  2. Adurthi N, Singla P (2014) Information driven optimal sensor control for efficient target localization and tracking. In: 2014 American Control Conference, pp 610–615, https://doi.org/10.1109/ACC.2014.6859310

  3. Adurthi N, Singla P, Singh T (2013) Optimal information collection for nonlinear systems- an application to multiple target tracking and localization. In: 2013 American Control Conference, pp 3864–3869, https://doi.org/10.1109/ACC.2013.6580429

  4. Adurthi N, Singla P, Majji M (2014) Conjugate unscented transformation based orbital state estimation and sensor tasking for efficient space surveillance. In: AIAA/AAS Astrodynamics Specialist Conference, p 4168

    Google Scholar 

  5. Adurthi N, Singla P, Majji M (2015) Conjugate unscented transform based approach for dynamic sensor tasking and space situational awareness. In: 2015 American Control Conference (ACC), pp 5218–5223, https://doi.org/10.1109/ACC.2015.7172154

  6. Adurthi N, Singla P, Singh T (2017) Conjugate unscented transformation: Applications to estimation and control. Journal of Dynamic Systems, Measurement, and Control 140(3):030,907–030,907–22, https://doi.org/10.1115/1.4037783, http://dx.doi.org/10.1115/1.4037783

  7. Adurthi N, Singla P, Majji M (2020) Mutual information based sensor tasking with applications to space situational awareness. Journal of Guidance, Control and Dynamics 43(4)

    Google Scholar 

  8. Anderson BDO, Moore JB (1979) Optimal filtering / Brian D. O. Anderson, John B. Moore. Prentice-Hall, Englewood Cliffs, N.J.:

    Google Scholar 

  9. Arasaratnam I, Haykin S (2009) Cubature kalman filter. IEEE transactions on Automatic Control 54(6):1254–1269

    Article  MathSciNet  MATH  Google Scholar 

  10. Bar-Shalom Y, Kirubarajan T, Li XR (2002) Estimation with Applications to Tracking and Navigation. John Wiley & Sons, Inc., New York, NY, USA

    Book  Google Scholar 

  11. Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW (2006) Bertini: Software for numerical algebraic geometry. Available at http://www.nd.edu/sommese/bertini

  12. Blasch E (2018) Dddas for space applications. Proceedings of SPIE 10641

    Google Scholar 

  13. Blasch E, Kahler B (2005) Multiresolution eo/ir tracking and identification. In: Proceedings of IEEE Conference on Information Fusion

    Google Scholar 

  14. Blasch E, Bosse E, Lambert D (2012) High Level Information Fusion Management and Systems Design. Artech House, Norwood, MA

    Google Scholar 

  15. Blasch E, Yang C, Kadar I (2014) Summary of tracking and identification methods. Proceedings of the IEEE 9119

    Google Scholar 

  16. Blasch E, Ravela S, Aved A (2018) Handbook of dynamic data driven applications systems. Springer

    Google Scholar 

  17. Blasch EP (1999) Derivation of a belief filter for high range resolution radar simultaneous target tracking and identification. PhD thesis, Wright State University

    Google Scholar 

  18. Burer S, Letchford AN (2012) Non-convex mixed-integer nonlinear programming: A survey. Surveys in Operations Research and Management Science 17(2):97–106

    Article  MathSciNet  Google Scholar 

  19. Chandra Chekuri, Pal M (2005) A recursive greedy algorithm for walks in directed graphs. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pp 245–253, https://doi.org/10.1109/SFCS.2005.9

  20. Chen G, Pham K, Blasch E (2019) Sensors and systems for space applications. Optical Engineering 58(4)

    Google Scholar 

  21. Cover TM, Thomas JA (2006) Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience

    Google Scholar 

  22. Frueh C, Fiedler H, Herzog J (2016) Realistic sensor tasking strategies. In: Advanced Maui Optical and Space Surveillance Technologies Conference

    Google Scholar 

  23. Gehly S, Jones B, Axelrad P (2018a) Sensor allocation for tracking geosynchronous space objects. Journal of Guidance, Control, and Dynamics 41(1):149–163, https://doi.org/10.2514/1.G000421

    Article  Google Scholar 

  24. Gehly S, Jones B, Axelrad P (2018b) Sensor allocation for tracking geosynchronous space objects. Journal of Guidance, Control, and Dynamics 41(1):149–163, https://doi.org/10.2514/1.G000421

    Article  Google Scholar 

  25. Gualdoni MJ, DeMars KJ (2018) The Information Content of Data Arcs for Multi-Step Sensor Tasking. https://doi.org/10.2514/6.2018-0727

  26. Guestrin C, Krause A, Singh AP (2005) Near-optimal sensor placements in gaussian processes. In: Proceedings of the 22nd international conference on Machine learning, ACM, pp 265–272

    Google Scholar 

  27. Henrion D, Lasserre JB (2003) Gloptipoly: Global optimization over polynomials with matlab and sedumi. ACM Transactions on Mathematical Software (TOMS) 29(2):165–194

    Article  MathSciNet  MATH  Google Scholar 

  28. Ito K, Xiong K (2000) Gaussian filters for nonlinear filtering problems. Automatic Control, IEEE Transactions on 45(5):910–927, https://doi.org/10.1109/9.855552

    Article  MathSciNet  MATH  Google Scholar 

  29. Jaunzemis AD, Holzinger MJ, Luu KK (2018) Sensor tasking for spacecraft custody maintenance and anomaly detection using evidential reasoning. Journal of Aerospace Information Systems 15(3):131–156, https://doi.org/10.2514/1.I010584

    Article  Google Scholar 

  30. Jazwinski AH (1970) Stochastic processes and filtering theory [by] Andrew H. Jazwinski. Academic Press, New York,

    MATH  Google Scholar 

  31. Jia B, Pham KD, Blasch E, Shen D, Wang Z, Chen G (2016) Cooperative space object tracking using space-based optical sensors via consensus-based filters. IEEE Transactions on Aerospace and Electronic Systems 52(4):1908–1936

    Article  Google Scholar 

  32. Julier S, Uhlmann J, Durrant-Whyte H (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control AC-45(3):477–482

    Article  MathSciNet  MATH  Google Scholar 

  33. Kahler B, Blasch E (2008) Sensor management fusion using operating conditions. In: 2008 IEEE National Aerospace and Electronics Conference, pp 281–288

    Google Scholar 

  34. Kalman RE (1960) A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1):35–45, https://doi.org/10.1115/1.3662552, http://dx.doi.org/10.1115/1.3662552

  35. Kreucher C, Kastella K, Hero III AO (2003) Information based sensor management for multitarget tracking. In: Proc. of SPIE Vol, vol 5204, p 481

    Google Scholar 

  36. Kreucher C, Hero AO, Kastella K (2005a) A comparison of task driven and information driven sensor management for target tracking. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp 4004–4009, https://doi.org/10.1109/CDC.2005.1582788

  37. Kreucher C, Hero I AO, Kastella K (2005b) A comparison of task driven and information driven sensor management for target tracking. In: Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE Conference on, pp 4004–4009

    Google Scholar 

  38. Kreucher CM, Kastella KD, Hero III AO (2004) Information-based sensor management for multitarget tracking. In: Signal and Data Processing of Small Targets 2003, International Society for Optics and Photonics, vol 5204, pp 480–489

    Google Scholar 

  39. Kullback S (1997) Information theory and statistics. Courier Corporation

    MATH  Google Scholar 

  40. Kullback S, Leibler RA (1951) On information and sufficiency. Annals of Mathematical Statistics 22:79–86

    Article  MathSciNet  MATH  Google Scholar 

  41. Madankan R, Singla P, Singh T (2015) Parameter estimation of atmospheric release incidents using maximal information collection. In: Ravela S, Sandu A (eds) Dynamic Data-Driven Environmental Systems Science, Springer International Publishing, Cham, pp 310–321

    Chapter  Google Scholar 

  42. Mahler RP (2014) Advances in statistical multisource-multitarget information fusion. Artech House

    Google Scholar 

  43. Majji M, Junkins JL, Turner JD (2008) A high order method for estimation of dynamic systems. The Journal of the Astronautical Sciences 56(3):401–440

    Article  Google Scholar 

  44. Martínez S, Bullo F (2006) Optimal sensor placement and motion coordination for target tracking. Automatica 42(4):661–668

    Article  MathSciNet  MATH  Google Scholar 

  45. Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular set functions—i. Mathematical programming 14(1):265–294

    Article  MathSciNet  MATH  Google Scholar 

  46. Papoulis A (1984) Probability, Random Variables, and Stochastic Processes. McGraw-Hill, NY

    MATH  Google Scholar 

  47. Rawlings J, Meadows E, Muske K (1994) Nonlinear model predictive control: A tutorial and survey. IFAC Proceedings Volumes 27(2):185–197, http://dx.doi.org/10.1016/S1474-6670(17)48151-1, iFAC Symposium on Advanced Control of Chemical Processes, Kyoto, Japan, 25–27 May 1994

  48. Soderlund A, Kumar M, Kim D (2018) Rapid clustering for optimal sensor selection in heterogeneous wireless sensor networks. In: 2018 AIAA Guidance, Navigation, and Control Conference, p 1135

    Google Scholar 

  49. Soderlund AA, Kumar M (2019) Optimization of multitarget tracking within a sensor network via information-guided clustering. Journal of Guidance, Control, and Dynamics 42:317–334

    Article  Google Scholar 

  50. Stroud AH, Secrest D (1966) Gaussian Quadrature Formulas. Englewood Cliffs, NJ: Prentice Hall

    Google Scholar 

  51. Tharmarasa R, Kirubarajan T, Hernandez ML (2007) Large-scale optimal sensor array management for multitarget tracking. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 37(5):803–814

    Article  Google Scholar 

  52. Vallado DA, McClain WD (2001) Fundamentals of Astrodynamics and Applications. Space Technology Library, Microcosm Press

    Google Scholar 

  53. Williams PS, Spencer DB, Erwin RS (2013) Coupling of estimation and sensor tasking applied to satellite tracking. Journal of Guidance, Control, and Dynamics 36(4):993–1007

    Article  Google Scholar 

Download references

Acknowledgements

This work is based upon work supported by the AFOSR grant FA9550-15-1-0313. Drs. Erik P. Blasch and Frederica Darema are acknowledged for the technical discussions. The authors are also grateful to the anonymous reviewers. Their inputs enhanced the quality of the chapter extensively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Singla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adurthi, N., Singla, P., Majji, M. (2023). Dynamic Data-Driven Sensor Tasking with Applications in Space and Aerospace Systems. In: Darema, F., Blasch, E.P., Ravela, S., Aved, A.J. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-27986-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27986-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27985-0

  • Online ISBN: 978-3-031-27986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics