Skip to main content

Energy Transfer Contrast Network for Unsupervised Domain Adaption

  • Conference paper
  • First Online:
Book cover MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

Abstract

The main goal of unsupervised domain adaptation is to improve the classification performance on unlabeled data in target domains. Many methods try to reduce the domain gap by treating multiple domains as one to enhance the generalization of a model. However, aligning domains as a whole does not account for instance-level alignment, which might lead to sub-optimal results. Currently, many researchers utilize meta-learning and instance segmentation approaches to tackle this problem. But it can only obtain a further optimized the domain-invariant feature learned by the model, rather than achieve instance-level alignment. In this paper, we interpret unsupervised domain adaptation from a new perspective, which exploits the energy difference between the source and target domains to reduce the performance drops caused by the domain gap. At the same time, we improve and exploit the contrastive learning loss, which can push the target domain away from the decision boundary. The experimental results on different benchmarks against a range of the state-of-the-art approaches justify the performance and the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: PMLR, pp. 97–105 (2015)

    Google Scholar 

  2. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: PMLR, pp. 2208–2217 (2017)

    Google Scholar 

  3. Kang, G., Zheng, L., Yan, Y., Yang, Y.: Deep adversarial attention alignment for unsupervised domain adaptation: the benefit of target expectation maximization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 420–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_25

    Chapter  Google Scholar 

  4. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: PMLR, pp. 1180–1189 (2015)

    Google Scholar 

  5. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML. PMLR, pp. 1989–1998 (2018)

    Google Scholar 

  6. Shao, H., Yuan, Z., Peng, X., Wu, X.: Contrastive learning in frequency domain for non-i.I.D. image classification. In: International Conference on Multimedia Modeling (2021)

    Google Scholar 

  7. Cui, S., Jin, X., Wang, S., He, Y., Huang, Q.: Heuristic domain adaptation. In: NeurlPS vol. 33, pp. 7571–7583 (2020)

    Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: PMLR, vol. 10, pp. 1597–1607 (2020)

    Google Scholar 

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  10. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR, pp. 5018–5027 (2017)

    Google Scholar 

  11. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)

    Google Scholar 

  14. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: ICML. PMLR, pp. 7404–7413 (2019)

    Google Scholar 

  15. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NeurlPS, vol. 19 (2006)

    Google Scholar 

  16. Chen, Y.-C., Gao, C., Robb, E., Huang, J.-B.: NAS-DIP: learning deep image prior with neural architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 442–459. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_26

    Chapter  Google Scholar 

  17. Saito, K., Saenko, K.: OVANet:: one-vs-all network for universal domain adaptation. In: ICCV, pp. 9000–9009 (2021)

    Google Scholar 

  18. Singh, A.: CLDA: contrastive learning for semi-supervised domain adaptation. In: NerulPS, vol. 34 (2021)

    Google Scholar 

  19. Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: CVPR, pp. 12 455–12 464 (2020)

    Google Scholar 

  20. Hu, L., Kan, M., Shan, S., Chen, X.: Unsupervised domain adaptation with hierarchical gradient synchronization. In: CVPR, pp. 4043–4052 (2020)

    Google Scholar 

  21. Wei, G., Lan, C., Zeng, W., Chen, Z.: Metaalign: coordinating domain alignment and classification for unsupervised domain adaptation. In: CVPR, pp. 16 643–16 653 (2021)

    Google Scholar 

  22. James, S., et al.: Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: CVPR, pp. 12 627–12 637 (2019)

    Google Scholar 

  23. Wang, Y., et al.: Clusterscl: cluster-aware supervised contrastive learning on graphs. In: Proceedings of the ACM Web Conference 2022, 1611–1621 (2022)

    Google Scholar 

  24. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  25. Goodfellow, I.J., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  26. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: ICCV, pp. 4893–4902 (2019)

    Google Scholar 

  27. Zhong, H., et al.: Graph contrastive clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9224–9233 (2021)

    Google Scholar 

  28. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21 464–21 475 (2020)

    Google Scholar 

  29. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. In: Predicting Structured Data, vol. 1, no. 0 (2006)

    Google Scholar 

  30. Wang, Y., et al.: Revisiting the transferability of supervised pretraining: an MLP perspective. arXiv preprint arXiv:2112.00496 (2021)

  31. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence 35(10), 8547–8555 (2021)

    Google Scholar 

  32. Gao, Y., Chaudhari, P.: A free-energy principle for representation learning. In: International Conference on Machine Learning. PMLR, pp. 3367–3376 (2020)

    Google Scholar 

  33. Vu, T.-H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  34. Deng, J., et al.:ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  35. Wang, F., Ding, Y., Liang, H., Wen, J.: Discriminative and selective pseudo-labeling for domain adaptation. In: International Conference on Multimedia Modeling (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China under Grant 41906177 and 41927805, the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City under Grants 2021JJLH0061, The National Key Research and Development Program of China under Grants 2018AAA0100605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, J., Lv, Q., Zhang, S., Dong, J. (2023). Energy Transfer Contrast Network for Unsupervised Domain Adaption. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics