Skip to main content

Deep RGB-Driven Learning Network for Unsupervised Hyperspectral Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 Workshops (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13848))

Included in the following conference series:

  • 235 Accesses

Abstract

Hyperspectral (HS) images are used in many fields to improve the analysis and understanding performance of captured scenes, as they contain a wide range of spectral information. However, the spatial resolution of hyperspectral images is usually very low, which limits their wide applicability in real tasks. To address the problem of low spatial resolution, super-resolution (SR) methods for hyperspectral images (HSI) have attracted widespread interest, which aims to mathematically generate high spatial resolution hyperspectral (HR-HS) images by combining degraded observational data: low spatial resolution hyperspectral (LR-HS) images and high resolution multispectral or RGB (HR-MS/RGB) images. Recently, paradigms based on deep learning have been widely explored as an alternative to automatically learn the inherent priors for the latent HR-HS images. These learning-based approaches are usually implemented in a fully supervised manner and require large external datasets including degraded observational data: LR-HS/HR-RGB images and corresponding HR-HS data, which are difficult to collect, especially for HSI SR scenarios. Therefore, in this study, a new unsupervised HSI SR method is proposed that uses only the observed LR-HS and HR-RGB images without any other external samples. Specifically, we use an RGB-driven deep generative network to learn the desired HR-HS images using a encoding-decoding-based network architecture. Since the observed HR-RGB images have a more detailed spatial structure and may be more suitable for two-dimensional convolution operations, we employ the observed HR-RGB images as input to the network as a conditional guide and adopt the observed LR-HS/HR-RGB images to formulate the loss function that guides the network learning. Experimental results on two HS image datasets show that our proposed unsupervised approach provides superior results compared to the SoTA deep learning paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar, N., Shafait, F., Mian, A.: Sparse spatio-spectral representation for hyperspectral image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 63–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_5

    Chapter  Google Scholar 

  2. Bach, S.H., He, B., Ratner, A., Ré, C.: Learning the structure of generative models without labeled data. In: International Conference on Machine Learning, pp. 273–282. PMLR (2017)

    Google Scholar 

  3. Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)

    Article  Google Scholar 

  4. Dian, R., Fang, L., Li, S.: Hyperspectral image super-resolution via non-local sparse tensor factorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5344–5353 (2017)

    Google Scholar 

  5. Dian, R., Li, S., Guo, A., Fang, L.: Deep hyperspectral image sharpening. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–11 (2018)

    MathSciNet  Google Scholar 

  6. Dong, W., et al.: Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans. Image Process. 25(5), 2337–2352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fu, Y., Zhang, T., Zheng, Y., Zhang, D., Huang, H.: Hyperspectral image super-resolution with optimized RGB guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11661–11670 (2019)

    Google Scholar 

  8. Han, X.H., Chen, Y.W.: Deep residual network of spectral and spatial fusion for hyperspectral image super-resolution. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 266–270. IEEE (2019)

    Google Scholar 

  9. Han, X.H., Shi, B., Zheng, Y.: Self-similarity constrained sparse representation for hyperspectral image super-resolution. IEEE Trans. Image Process. 27(11), 5625–5637 (2018)

    Article  MathSciNet  Google Scholar 

  10. Han, X.H., Shi, B., Zheng, Y.: SSF-CNN: spatial and spectral fusion with CNN for hyperspectral image super-resolution. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2506–2510. IEEE (2018)

    Google Scholar 

  11. Han, X.H., Sun, Y., Chen, Y.W.: Residual component estimating CNN for image super-resolution. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 443–447. IEEE (2019)

    Google Scholar 

  12. Han, X.H., Zheng, Y., Chen, Y.W.: Multi-level and multi-scale spatial and spectral fusion CNN for hyperspectral image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  13. He, W., Zhang, H., Zhang, L., Shen, H.: Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 54(1), 178–188 (2015)

    Article  Google Scholar 

  14. Huang, Q., Li, W., Hu, T., Tao, R.: Hyperspectral image super-resolution using generative adversarial network and residual learning. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3012–3016. IEEE (2019)

    Google Scholar 

  15. Kawakami, R., Matsushita, Y., Wright, J., Ben-Ezra, M., Tai, Y.W., Ikeuchi, K.: High-resolution hyperspectral imaging via matrix factorization. In: CVPR 2011, pp. 2329–2336. IEEE (2011)

    Google Scholar 

  16. Lanaras, C., Baltsavias, E., Schindler, K.: Hyperspectral super-resolution by coupled spectral unmixing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3586–3594 (2015)

    Google Scholar 

  17. Liu, Z., Zheng, Y., Han, X.H.: Unsupervised multispectral and hyperspectral image fusion with deep spatial and spectral priors. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  18. Liu, Z., Zheng, Y., Han, X.H.: Deep unsupervised fusion learning for hyperspectral image super resolution. Sensors 21(7), 2348 (2021)

    Article  Google Scholar 

  19. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)

    Article  Google Scholar 

  20. Mertens, S., et al.: Proximal hyperspectral imaging detects diurnal and drought-induced changes in maize physiology. Front. Plant Sci. 12, 240 (2021)

    Article  Google Scholar 

  21. Park, S.M., Kim, Y.L.: Spectral super-resolution spectroscopy for biomedical applications. In: Advanced Chemical Microscopy for Life Science and Translational Medicine 2021, vol. 11656, p. 116560N. International Society for Optics and Photonics (2021)

    Google Scholar 

  22. Qu, Y., Qi, H., Kwan, C.: Unsupervised sparse dirichlet-net for hyperspectral image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2511–2520 (2018)

    Google Scholar 

  23. Sakthivel, S.P., Sivalingam, J.V., Shanmugam, S., et al.: Super-resolution mapping of hyperspectral images for estimating the water-spread area of peechi reservoir, southern india. J. Appl. Remote Sens. 8(1), 083510 (2014)

    Article  Google Scholar 

  24. Saralıoğlu, E., Görmüş, E.T., Güngör, O.: Mineral exploration with hyperspectral image fusion. In: 2016 24th Signal Processing and Communication Application Conference (SIU), pp. 1281–1284. IEEE (2016)

    Google Scholar 

  25. Uezato, T., Hong, D., Yokoya, N., He, W.: Guided deep decoder: unsupervised image pair fusion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 87–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_6

    Chapter  Google Scholar 

  26. Wang, J., Kwon, S., Shim, B.: Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wycoff, E., Chan, T.H., Jia, K., Ma, W.K., Ma, Y.: A non-negative sparse promoting algorithm for high resolution hyperspectral imaging. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1409–1413. IEEE (2013)

    Google Scholar 

  28. Xie, Q., Zhou, M., Zhao, Q., Meng, D., Zuo, W., Xu, Z.: Multispectral and hyperspectral image fusion by MS/HS fusion net. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1585–1594 (2019)

    Google Scholar 

  29. Xu, J.L., Riccioli, C., Sun, D.W.: Comparison of hyperspectral imaging and computer vision for automatic differentiation of organically and conventionally farmed salmon. J. Food Eng. 196, 170–182 (2017)

    Article  Google Scholar 

  30. Yokoya, N., Chan, J.C.W., Segl, K.: Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and sentinel-2 images. Remote Sens. 8(3), 172 (2016)

    Article  Google Scholar 

  31. Yokoya, N., Zhu, X.X., Plaza, A.: Multisensor coupled spectral unmixing for time-series analysis. IEEE Trans. Geosci. Remote Sens. 55(5), 2842–2857 (2017)

    Article  Google Scholar 

  32. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)

    Article  Google Scholar 

  33. Zhang, S., Liang, G., Pan, S., Zheng, L.: A fast medical image super resolution method based on deep learning network. IEEE Access 7, 12319–12327 (2018)

    Article  Google Scholar 

  34. Zhao, Y., Yang, J., Zhang, Q., Song, L., Cheng, Y., Pan, Q.: Hyperspectral imagery super-resolution by sparse representation and spectral regularization. EURASIP J. Adv. Signal Process. 2011(1), 1–10 (2011)

    Article  Google Scholar 

  35. Zhu, Z., Hou, J., Chen, J., Zeng, H., Zhou, J.: Residual component estimating CNN for image super-resolution, vol. 30, pp. 1423–1428 (2020)

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by the Grant-in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant No. 20K11867, and JSPS KAKENHI Grant Number JP12345678.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Hua Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Han, XH. (2023). Deep RGB-Driven Learning Network for Unsupervised Hyperspectral Image Super-Resolution. In: Zheng, Y., Keleş, H.Y., Koniusz, P. (eds) Computer Vision – ACCV 2022 Workshops. ACCV 2022. Lecture Notes in Computer Science, vol 13848. Springer, Cham. https://doi.org/10.1007/978-3-031-27066-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27066-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27065-9

  • Online ISBN: 978-3-031-27066-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics