We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Learning Texture Enhancement Prior with Deep Unfolding Network for Snapshot Compressive Imaging

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Abstract

Coded Aperture Snapshot Spectral Imaging (CASSI) utilizes a two-dimensional (2D) detector to capture three-dimensional (3D) data, significantly reducing the acquisition cost of hyperspectral images. However, such an ill-posed problem desires a reliable decoding algorithm with a well-designed prior term. This paper proposes a decoding model with a learnable prior term for snapshot compressive imaging. We expand the inference obtained by Half Quadratic Splitting (HQS) to construct our Texture Enhancement Prior learning network, TEP-net. Considering the high-frequency information representing the texture can effectively enhance the reconstruction quality. We then propose the residual Shuffled Multi-spectral Channel Attention (Shuffled-MCA) module to learn information corresponding to different frequency components by introducing the Discrete Cosine Transform (DCT) bases. In order to overcome the drawbacks of grouping operations within the MCA module efficiently, we employ the channel shuffle operation instead of a channel-wise operation. Channel shuffle rearranges the channel descriptors, allowing for better extraction of channel correlations subsequently. The experimental results show that our method outperforms the existing state-of-the-art method in numerical indicators. At the same time, the visualization results also show our superior performance in texture enhancement.

This research was funded by the National Natural Science Foundation of China under Grant 61871226; in part by the Fundamental Research Funds for the Central Universities under Grant NO. JSGP202204; in part by the Jiangsu Provincial Social Developing Project under Grant BE2018727.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)

    Google Scholar 

  2. Bioucas-Dias, J.M., Figueiredo, M.A.: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cheng, Z., et al.: Memory-efficient network for large-scale video compressive sensing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16246–16255 (2021)

    Google Scholar 

  4. Choi, I., Jeon, D.S., Nam, G., Gutierrez, D., Kim, M.H.: High-quality hyperspectral reconstruction using a spectral prior. ACM Trans. Graph. (TOG) 36(6), 1–13 (2017)

    Article  Google Scholar 

  5. Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)

    Article  Google Scholar 

  6. Govender, M., Chetty, K., Bulcock, H.: A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa 33(2), 145–151 (2007)

    Google Scholar 

  7. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 399–406 (2010)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Huang, T., Dong, W., Yuan, X., Wu, J., Shi, G.: Deep gaussian scale mixture prior for spectral compressive imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16216–16225 (2021)

    Google Scholar 

  11. Liu, Y., Yuan, X., Suo, J., Brady, D.J., Dai, Q.: Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2990–3006 (2018)

    Article  Google Scholar 

  12. Lu, B., Dao, P.D., Liu, J., He, Y., Shang, J.: Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12(16), 2659 (2020)

    Article  Google Scholar 

  13. Ma, J., Liu, X.Y., Shou, Z., Yuan, X.: Deep tensor ADMM-Net for snapshot compressive imaging. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10223–10232 (2019)

    Google Scholar 

  14. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  15. Magid, S.A., et al.: Dynamic high-pass filtering and multi-spectral attention for image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4288–4297 (2021)

    Google Scholar 

  16. Meng, Z., Ma, J., Yuan, X.: End-to-end low cost compressive spectral imaging with spatial-spectral self-attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 187–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_12

    Chapter  Google Scholar 

  17. Meng, Z., Yu, Z., Xu, K., Yuan, X.: Self-supervised neural networks for spectral snapshot compressive imaging. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2622–2631 (2021)

    Google Scholar 

  18. Miao, X., Yuan, X., Pu, Y., Athitsos, V.: l-Net: reconstruct hyperspectral images from a snapshot measurement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4059–4069 (2019)

    Google Scholar 

  19. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)

  20. Qin, Z., Zhang, P., Wu, F., Li, X.: FcaNet: frequency channel attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 783–792 (2021)

    Google Scholar 

  21. Su, K., Yu, D., Xu, Z., Geng, X., Wang, C.: Multi-person pose estimation with enhanced channel-wise and spatial information. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5674–5682 (2019)

    Google Scholar 

  22. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44–B51 (2008)

    Article  Google Scholar 

  23. Wagadarikar, A.A., Pitsianis, N.P., Sun, X., Brady, D.J.: Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt. Express 17(8), 6368–6388 (2009)

    Article  Google Scholar 

  24. Wang, H., Wu, X., Huang, Z., Xing, E.P.: High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694 (2020)

    Google Scholar 

  25. Wang, L., Sun, C., Fu, Y., Kim, M.H., Huang, H.: Hyperspectral image reconstruction using a deep spatial-spectral prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8032–8041 (2019)

    Google Scholar 

  26. Wang, X., Kan, M., Shan, S., Chen, X.: Fully learnable group convolution for acceleration of deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9049–9058 (2019)

    Google Scholar 

  27. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  28. Xiong, Z., Shi, Z., Li, H., Wang, L., Liu, D., Wu, F.: HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 518–525 (2017)

    Google Scholar 

  29. Yang, J., et al.: Gaussian mixture model for video compressive sensing. In: 2013 IEEE International Conference on Image Processing, pp. 19–23. IEEE (2013)

    Google Scholar 

  30. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 10–18 (2016)

    Google Scholar 

  31. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yuan, X.: Generalized alternating projection based total variation minimization for compressive sensing. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2539–2543. IEEE (2016)

    Google Scholar 

  33. Yuen, P.W., Richardson, M.: An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Sci. J. 58(5), 241–253 (2010)

    Article  Google Scholar 

  34. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115 (2021)

    Article  Google Scholar 

  35. Zhang, J., Zhao, H., Yao, A., Chen, Y., Zhang, L., Liao, H.: Efficient semantic scene completion network with spatial group convolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 733–749 (2018)

    Google Scholar 

  36. Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

    Google Scholar 

  37. Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)

    Google Scholar 

  38. Zhang, Q.L., Yang, Y.B.: SA-Net: shuffle attention for deep convolutional neural networks. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2235–2239. IEEE (2021)

    Google Scholar 

  39. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  40. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xiao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 24194 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, M., Wei, Z., Xiao, L. (2023). Learning Texture Enhancement Prior with Deep Unfolding Network for Snapshot Compressive Imaging. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics