Skip to main content

Multispectral-Based Imaging and Machine Learning for Noninvasive Blood Loss Estimation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Abstract

Blood loss estimation during surgical operations is crucial in determining the appropriate transfusion decisions. More practical emerging solutions, e.g. the Triton System, use image processing and artificial intelligence (AI) in quantifying blood loss from images of blood-soaked sponges. Triton utilizes an infrared or depth camera that’s used to identify the region of color (RGB) image corresponding to a surgical textile. However, calculating depth is computationally expensive and can provide only the shape information. In this research, we propose a multispectral-based imaging and machine learning approach to directly quantify blood loss from images of surgical sponges. Near-infrared (NIR) and Visible (Vis) light sources in conjunction with an RGB imaging sensor without a NIR filter are used. With this, in addition to the improved focus and reduced background interference on the gauze image due to blood’s IR absorption capacities, the color as well as the shape information may be utilized. Results show that the multispectral-based imaging approach rendered a +28.30%, +48%, +27.97%, and 25.72% improvement on the MAE, MSE, RMSE, and MAPE, compared to using a single Vis wavelength or RGB image.

Supported by DOST-ERDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obstetric Hemorrhage. https://www.gausssurgical.com/obstetric-hemorrhage/

  2. statsmodels.graphics.agreement.mean_diff_plot - statsmodels. https://www.statsmodels.org/dev/generated/statsmodels.graphics.agreement.mean_diff_plot.html

  3. US Patent for Method for estimating blood component quantities in surgical textiles Patent (Patent # 11,282,194 issued March 22, 2022) - Justia Patents Search. https://patents.justia.com/patent/11282194

  4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM, San Francisco (August 2016). https://doi.org/10.1145/2939672.2939785. https://dl.acm.org/doi/10.1145/2939672.2939785

  5. Doctorvaladan, S., Jelks, A., Hsieh, E.W., Thurer, R.L., Zakowski, M.I., Lagrew, D.C.: Accuracy of blood loss measurement during cesarean delivery. AJP Rep. 7, e93–e100 (2017)

    Article  Google Scholar 

  6. Edelman, G.J., van Leeuwen, T.G., Aalders, M.C.G.: Hyperspectral imaging of the crime scene for detection and identification of blood stains, p. 87430A. Baltimore, Maryland, USA (May 2013). https://doi.org/10.1117/12.2021509. https://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2021509

  7. Edelman, G.J., Roos, M., Bolck, A., Aalders, M.C.: Practical implementation of blood stain age estimation using spectroscopy. IEEE J. Sel. Top. Quantum Electron. 22(3), 415–421 (2016). https://doi.org/10.1109/JSTQE.2016.2536655, https://ieeexplore.ieee.org/document/7422679/

  8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504. https://linkinghub.elsevier.com/retrieve/pii/S002200009791504X

  9. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002). https://doi.org/10.1016/S0167-9473(01)00065-2. https://linkinghub.elsevier.com/retrieve/pii/S0167947301000652

  10. Giavarina, D.: Understanding Bland Altman analysis. Biochemia Medica 25(2), 141–151 (2015). https://doi.org/10.11613/BM.2015.015. https://www.biochemia-medica.com/en/journal/25/2/10.11613/BM.2015.015

  11. Hancock, A., Weeks, A.D., Lavender, D.T.: Is accurate and reliable blood loss estimation the ‘crucial step’ in early detection of postpartum haemorrhage: an integrative review of the literature. BMC Pregnancy Childbirth 15(1), 230 (2015). https://doi.org/10.1186/s12884-015-0653-6. https://bmcpregnancychildbirth.biomedcentral.com/articles/10.1186/s12884-015-0653-6

  12. Johar, R.S., Smith, R.P.: Assessing gravimetric estimation of intraoperative blood loss. J. Gynecol. Surg. 9(3), 151–154 (1993). https://doi.org/10.1089/gyn.1993.9.151. https://www.liebertpub.com/doi/10.1089/gyn.1993.9.151

  13. Kollberg, S.E., Häggström, A.C.E., Lingehall, H.C., Olofsson, B.: Accuracy of visually estimated blood loss in surgical sponges by members of the surgical team. Nurse Anesthesiol. 87(4), 277–284 (2020)

    Google Scholar 

  14. Li, Y.J., et al.: A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence. Ann. Transl. Med. 8(19), 1219 (2020). https://doi.org/10.21037/atm-20-1806. https://atm.amegroups.com/article/view/52195/html

  15. Liumbruno, G.M., Bennardello, F., Lattanzio, A., Piccoli, P.L., Rossetti, G.: Recommendations for the transfusion of red blood cells. Blood Transfus. (2008). https://doi.org/10.2450/2008.0020-08. https://doi.org/10.2450/2008.0020-08

  16. Nowicki, P.D., et al.: Measurement of intraoperative blood loss in pediatric orthopaedic patients: evaluation of a new method. JAAOS Glob. Res. Rev. 2(5), e014 (2018). https://doi.org/10.5435/JAAOSGlobal-D-18-00014. https://journals.lww.com/01979360-201805000-00002

  17. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4. https://linkinghub.elsevier.com/retrieve/pii/0031320395000674

  18. Pietikäinen, M., Zhao, G.: Two decades of local binary patterns. In: Advances in Independent Component Analysis and Learning Machines, pp. 175–210. Elsevier (2015). https://doi.org/10.1016/B978-0-12-802806-3.00009-9. https://linkinghub.elsevier.com/retrieve/pii/B9780128028063000099

  19. Sharareh, B., Woolwine, S., Satish, S., Abraham, P., Schwarzkopf, R.: Real time intraoperative monitoring of blood loss with a novel tablet application. Open Orthop. J. 9, 422–6 (2015). https://doi.org/10.2174/1874325001509010422

  20. Song, K.C., Yan, Y.H., Chen, W.H., Zhang, X.: Research and perspective on local binary pattern. Acta Automatica Sinica 39(6), 730–744 (2013). https://doi.org/10.1016/S1874-1029(13)60051-8. https://linkinghub.elsevier.com/retrieve/pii/S1874102913600518

  21. Stricker, M.A., Orengo, M.: Similarity of color images, San Jose, CA, p. 381 (March 1995). https://doi.org/10.1117/12.205308. https://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.205308

  22. Sukprasert, M., Choktanasiri, W., Ayudhya, N.I.N., Promsonthi, P., O-Prasertsawat, P.: Increase accuracy of visual estimation of blood loss from education programme. J. Med. Assoc. Thai. (Chotmaihet Thangphaet) 89(Suppl. 4), S54–S59 (2006)

    Google Scholar 

  23. Wu, S., Nagahashi, H.: Analysis of generalization ability for different AdaBoost variants based on classification and regression trees. J. Electr. Comput. Eng. 2015, 1–17 (2015). https://doi.org/10.1155/2015/835357. https://www.hindawi.com/journals/jece/2015/835357/

  24. Yang, J., Mathew, J.J., Dube, R.R., Messinger, D.W.: Spectral feature characterization methods for blood stain detection in crime scene backgrounds, Baltimore, Maryland, United States, p. 98400E (May 2016). https://doi.org/10.1117/12.2224099. https://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2224099

Download references

Acknowledgement

DOST-ERDT Philippines is acknowledged for the funding and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ara Abigail E. Ambita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambita, A.A.E., Co, C.S., David, L.T., Ferrera, C.M., Naval, P.C. (2023). Multispectral-Based Imaging and Machine Learning for Noninvasive Blood Loss Estimation. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics