Skip to main content

Multi-object Grasping in the Plane

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 27))

Included in the following conference series:

Abstract

We consider a novel problem where multiple rigid convex polygonal objects rest in randomly placed positions and orientations on a planar surface visible from an overhead camera. The objective is to efficiently grasp and transport all objects into a bin using multi-object push-grasps, where multiple objects are pushed together to facilitate multi-object grasping. We provide necessary conditions for frictionless multi-object push-grasps and apply these to filter inadmissible grasps in a novel multi-object grasp planner. We find that our planner is 19 times faster than a Mujoco simulator baseline. We also propose a picking algorithm that uses both single- and multi-object grasps to pick objects. In physical grasping experiments comparing performance with a single-object picking baseline, we find that the frictionless multi-object grasping system achieves 13.6% higher grasp success and is 59.9% faster, from 212 PPH to 340 PPH. See https://sites.google.com/view/multi-object-grasping for videos and code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danielczuk, M., Mahler, J., Correa, C., Goldberg, K.: Linear push policies to increase grasp access for robot bin picking. In: CASE (2018). https://ieeexplore.ieee.org/document/8560406

  2. Mahler, J., Goldberg, K.: Learning deep policies for robot bin picking by simulating robust grasping sequences. In: CoRL, vol. 78, pp. 515–524 (2017)

    Google Scholar 

  3. Matsumura, R., Domae, Y., Wan, W., Harada, K.: Learning based robotic bin-picking for potentially tangled objects. In: IROS (2019)

    Google Scholar 

  4. Huang, H., et al.: Mechanical search on shelves using LAX-RAY: lateral access X-RAY. In: IROS (2021). https://arxiv.org/abs/2011.11696

  5. Ichnowski, J., Danielczuk, M., Xu, J., Satish, V., Goldberg, K.: GOMP: grasp-optimized motion planning for bin picking. In: ICRA (2020)

    Google Scholar 

  6. Ichnowski, J., Avigal, Y., Satish, V., Goldberg, K.: Deep learning can accelerate grasp-optimized motion planning. Sci. Robot. 5(48), eabd7710 (2020)

    Article  Google Scholar 

  7. Yamada, T., Yamanaka, S., Yamada, M., Funahashi, Y., Yamamoto, H.: Grasp stability analysis of multiple planar objects. In: ROBIO (2009)

    Google Scholar 

  8. Yamada, T., Yamada, M., Yamamoto, H.: Stability analysis of multiple objects grasped by multifingered hands with revolute joints in 2D. In: IEEE International Conference on Mechatronics and Automation (2012)

    Google Scholar 

  9. Harada, K., Kaneko, M.: Kinematics and internal force in grasping multiple objects. In: IROS (1998)

    Google Scholar 

  10. Sakamoto, T., Wan, W., Nishi, T., Harada, K.: Efficient picking by considering simultaneous two-object grasping. In: IROS (2021)

    Google Scholar 

  11. Agboh, W.C., Ruprecht, D., Dogar, M.R.: Combining coarse and fine physics for manipulation using parallel-in-time integration. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds.) ISRR 2019. Springer Proceedings in Advanced Robotics, vol. 20, pp. 725–740. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-95459-8_44

    Chapter  Google Scholar 

  12. Agboh, W.C., Ruprecht, D., Dogar, M.R.: Parareal with a learned coarse model for robotic manipulation. Comput. Visual Sci. 23(8), 1–10 (2020)

    MathSciNet  Google Scholar 

  13. Hasan, M., et al.: Human-like planning for reaching in cluttered environments. In: ICRA (2020)

    Google Scholar 

  14. Morrison, D., Corke, P., Leitner, J.: Learning robust, real-time, reactive robotic grasping. IJRR 39(2–3), 183–201 (2020)

    Google Scholar 

  15. Lou, X., Yang, Y., Choi, C.: Collision-aware target-driven object grasping in constrained environments. In: ICRA (2021)

    Google Scholar 

  16. Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 671–700. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_29

    Chapter  Google Scholar 

  17. Rodriguez, A., Mason, M.T., Ferry, S.: From caging to grasping. IJRR 31(7), 886–900 (2012)

    Google Scholar 

  18. Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based robot grasping with the google object recognition engine. In: ICRA (2013)

    Google Scholar 

  19. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis-a survey. IEEE Trans. Rob. 30(2), 289–309 (2014)

    Article  Google Scholar 

  20. Goldfeder, C., Allen, P.K.: Data-driven grasping. Auton. Robot. 31, 1–20 (2011)

    Article  Google Scholar 

  21. Mahler, J., et al.: Dex-net 1.0: a cloud-based network of 3D objects for robust grasp planning using a multi-armed bandit model with correlated rewards. In: ICRA (2016)

    Google Scholar 

  22. Pauly, L., Agboh, W.C., Hogg, D.C., Fuentes, R.: O2a: one-shot observational learning with action vectors. Front. Robot. AI 8, 686368 (2021)

    Article  Google Scholar 

  23. Bejjani, W., Agboh, W.C., Dogar, M.R., Leonetti, M.: Occlusion-aware search for object retrieval in clutter. In: IEEE IROS (2021)

    Google Scholar 

  24. Harada, K., Kaneko, M.: Enveloping grasp for multiple objects. In: ICRA (1998)

    Google Scholar 

  25. Harada, K., Kaneko, M., Tsujii, T.: Rolling-based manipulation for multiple objects. IEEE Trans. Robot. Autom. 16(5), 457–468 (2000)

    Article  Google Scholar 

  26. Harada, K., Kaneko, M., Tsuji, T.: Active force closure for multiple objects. In: Advances in Robot Kinematics, pp. 155–164 (2000)

    Google Scholar 

  27. Yoshikawa, T., Watanabe, T., Daito, M.: Optimization of power grasps for multiple objects. In: ICRA (2001)

    Google Scholar 

  28. Yamada, T., Ooba, T.,  Yamamoto, T., Mimura, N., Funahashi, Y.: Grasp stability analysis of two objects in two dimensions. In: ICRA (2005)

    Google Scholar 

  29. Yamada, T., Mimura, N., Funahashi, Y.: Grasp stability analysis of two objects with both friction and frictionless contacts in two dimensions. In: IEEE International Symposium on Micro-NanoMechatronics and Human Science (2005)

    Google Scholar 

  30. Yamada, T., Yamamoto, H.: Static grasp stability analysis of multiple spatial objects. J. Control Sci. Eng. 3, 118–139 (2015)

    Google Scholar 

  31. Chen, T., Shenoy, A., Kolinko, A., Shah, S., Sun, Y.: Multi-object grasping - estimating the number of objects in a robotic grasp. In: IROS (2021)

    Google Scholar 

  32. Shenoy, A., Chen, T., Sun, Y.: Multi-object grasping - generating efficient robotic picking and transferring policy. In: CoRR (2021)

    Google Scholar 

  33. Dogar, M., Srinivasa, S.S.: A framework for push-grasping in clutter. In: RSS (2011)

    Google Scholar 

  34. Agboh, W.C., Dogar, M.R.: Real-time online re-planning for grasping under clutter and uncertainty. In: IEEE Humanoids, pp. 1–8 (2018)

    Google Scholar 

  35. Agboh, W.C., Dogar, M.R.: Pushing fast and slow: task-adaptive planning for non-prehensile manipulation under uncertainty. In: WAFR (2018)

    Google Scholar 

  36. Agboh, W.C., Dogar, M.R.: Robust physics-based manipulation by interleaving open and closed-loop execution. CoRR abs/2105.08325 (2021)

    Google Scholar 

  37. Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica 10, 201–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. The authors were supported in part by donations from Siemens. Mehmet Dogar was partially supported by an EPSRC Fellowship (EP/V052659) and Wisdom C. Agboh was supported by EPSRC Doctoral Prize Fellowship Award EP/T517860/1. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wisdom C. Agboh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 7811 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agboh, W.C., Ichnowski, J., Goldberg, K., Dogar, M.R. (2023). Multi-object Grasping in the Plane. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_15

Download citation

Publish with us

Policies and ethics