Abstract
Image-based object identification like Insect recognition depends on manual assessment and traps. Automation such as combination of pattern recognition and machine vision have been implemented and therefore the convolutional neural network, has reached some important applications in various areas like fruit sorting, robotic harvesting, quality observation, etc. Recently, insect recognition work based on deep learning shows the most effective outcome to classification performance. A densely connected convolutional neural network is used to classify pests and inspect the outcome of classification performance with other models using the DenseNet201 model. The experiment has been performed on 19 insect classes. Experimental result shows that the proposed method ensures best accuracy and classification performance where insects are well depicted at the middle of the image and ranging degrees of background clutter are reduced. The mean accuracy for classification ranges from 87% which has provided an optimized approach for insect pest detection and recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xiao, X.Y., Rongxiang, H., Zhang, S.W., Wang, X.F.: HOG-based approach for leaf classification. In: Huang, D.S., Zhang, X., García, CA Reyes., Zhang, L. (eds.) ICIC 2010. LNCS (LNAI), vol. 6216, pp. 149–155. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14932-0_19
Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradientbased learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Weeks, P.J.D., O’Neill, M.A., Gaston, K.J., Gauld, I.D.: Automating insect identification: exploring the limitations of a prototype system. J. Appl. Entomol. 123(1), 1–8 (1999)
Watson, A.T., O’Neill, M.A., Kitching, I.J.: Automated identification of live moths (Macrolepidoptera) using digital automated identification system (DAISY). Syst. Biodivers. 1(3), 287–300 (2004)
Russell, K.N., Do, M.T., Platnick, N.I.: Introducing SPIDA-web: an automated identification system for biological species. In: Proceedings of Taxonomic DatabaseWorking Group Annual Meeting, pp. 11–18 (2005)
Arbuckle, T., Schröder, S., Steinhage, V., Wittmann, D.: Biodiversity informatics in action: identification and monitoring of bee species using abis. In: Proceedings of the 15th International Symposium Informatics for Environmental Protection, vol. 1, pp. 425–430. ETH Zurich (2001)
Mayo, M., Watson, A.T.: Automatic species identification of live moths. Knowl.-Based Syst. 20(2), 195–202 (2007)
Larios, N., et al.: Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects. Mach. Vision Appl. 19(2), 105–123 (2008). https://doi.org/10.1007/s00138-007-0086-y
Gaston, K.J., O’Neill, M.A.: Automated species identification: why not? Philos. Trans. R. Soc. Lond. Series B: Biol. Sci. 359(1444), 655–667 (2004)
Murase, H., Nayar, S.K.: Visual learning and recognition of 3-d objects from appearance. Int. J. Comput. Vis. 14, 5–24 (1995). https://doi.org/10.1007/BF01421486
Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7, 11–32 (1991). https://doi.org/10.1007/BF00130487
Schiele, B., Crowley, J.L.: Object recognition using multidimensional receptive field histograms. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 610–619. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015571
Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Technical report, Stanford Univ Ca Dept of Computer Science (1980)
Harris, C., Stephens, M., et al.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vision 60(1), 63–86 (2004). https://doi.org/10.1023/B:VISI.0000027790.02288.f2
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_18
Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–85 (2004)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Ke, Y., Sukthankar, R.: Pca-sift: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–II. IEEE (2004)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using affine-invariant regions. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 2, pp. II–II. IEEE (2003)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 9, 891–906 (1991)
Gool, L., Moons, T., Ungureanu, D.: Affine / photometric invariants for planar intensity patterns. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015574
Wen, C., Guyer, D.E., Li, W.: Automated insect classification with combined global and local features for orchard management. In: 2009 Reno, Nevada, 21 June - 24 June 2009, p. 1. American Society of Agricultural and Biological Engineers (2009)
Zhang, D., Lu, G., et al.: A comparative study on shape retrieval using Fourier descriptors with different shape signatures. In: Proceedings of the International Conference on Intelligent Multimedia and Distance Education (ICIMADE01), pp. 1–9 (2001)
Ming-Kuei, H.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theor. 8(2), 179–187 (1962)
Haralick, R.M.: Texture features for image classification. IEEE Trans. Syst. Man. Cybern. 6(4), 269–285 (1976)
Rodenacker, K., Hense, B., Jütting, U., Gais, P.: Automatic analysis of aqueous specimens for phytoplankton structure recognition and population estimation. Microsc. Res. Tech. 69(9), 708–720 (2006)
ChengluWen and Daniel Guyer: Image-based orchard insect automated identification and classification method. Comput. Electron. Agric. 89, 110–115 (2012)
Bisgin, H., et al.: Comparing svm and ann based machine learning methods for species identification of food contaminating beetles. Sci. Rep. 8(1), 1–12 (2018)
Xia, D., Chen, P., Wang, B., Zhang, J., Xie, C.: Insect detection and classification based on an improved convolutional neural network. Sensors 18(12), 4169 (2018)
Lim, S., Kim, S., Kim, D.: Performance effect analysis for insect classification using convolutional neural network. In: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 210–215. IEEE (2017)
Rustia, D.J.A., Lin, C.E., Chung, J.Y., Lin, T.T.: A real-time multi-class insect pest identification method using cascaded convolutional neural networks. In: 9th International Symposium on Machinery and Mechatronics for Agricultural and Biosystems Engineering (ISMAB), p. 67 (2018)
Liu, Z., Gao, J., Yang, G., Zhang, H., He, Y.: Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Sci. Rep. 6, 20410 (2016)
Tree Insects, Forest Entomology @ Forestry Images. Insect Images. Geraadpleegd op 28 June 2019, van (2018). https://www.forestryimages.org/insects.cfm/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Akter, R., Islam, M.S., Sohan, K., Ahmed, M.I. (2023). Insect Recognition and Classification Using Optimized Densely Connected Convolutional Neural Network. In: Laouar, M.R., Balas, V.E., Lejdel, B., Eom, S., Boudia, M.A. (eds) 12th International Conference on Information Systems and Advanced Technologies “ICISAT 2022”. ICISAT 2022. Lecture Notes in Networks and Systems, vol 624. Springer, Cham. https://doi.org/10.1007/978-3-031-25344-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-25344-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25343-0
Online ISBN: 978-3-031-25344-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)