Skip to main content

Insect Recognition and Classification Using Optimized Densely Connected Convolutional Neural Network

  • Conference paper
  • First Online:
12th International Conference on Information Systems and Advanced Technologies “ICISAT 2022” (ICISAT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 624))

Included in the following conference series:

  • 370 Accesses

Abstract

Image-based object identification like Insect recognition depends on manual assessment and traps. Automation such as combination of pattern recognition and machine vision have been implemented and therefore the convolutional neural network, has reached some important applications in various areas like fruit sorting, robotic harvesting, quality observation, etc. Recently, insect recognition work based on deep learning shows the most effective outcome to classification performance. A densely connected convolutional neural network is used to classify pests and inspect the outcome of classification performance with other models using the DenseNet201 model. The experiment has been performed on 19 insect classes. Experimental result shows that the proposed method ensures best accuracy and classification performance where insects are well depicted at the middle of the image and ranging degrees of background clutter are reduced. The mean accuracy for classification ranges from 87% which has provided an optimized approach for insect pest detection and recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiao, X.Y., Rongxiang, H., Zhang, S.W., Wang, X.F.: HOG-based approach for leaf classification. In: Huang, D.S., Zhang, X., García, CA Reyes., Zhang, L. (eds.) ICIC 2010. LNCS (LNAI), vol. 6216, pp. 149–155. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14932-0_19

    Chapter  Google Scholar 

  2. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  3. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradientbased learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  4. Weeks, P.J.D., O’Neill, M.A., Gaston, K.J., Gauld, I.D.: Automating insect identification: exploring the limitations of a prototype system. J. Appl. Entomol. 123(1), 1–8 (1999)

    Article  Google Scholar 

  5. Watson, A.T., O’Neill, M.A., Kitching, I.J.: Automated identification of live moths (Macrolepidoptera) using digital automated identification system (DAISY). Syst. Biodivers. 1(3), 287–300 (2004)

    Article  Google Scholar 

  6. Russell, K.N., Do, M.T., Platnick, N.I.: Introducing SPIDA-web: an automated identification system for biological species. In: Proceedings of Taxonomic DatabaseWorking Group Annual Meeting, pp. 11–18 (2005)

    Google Scholar 

  7. Arbuckle, T., Schröder, S., Steinhage, V., Wittmann, D.: Biodiversity informatics in action: identification and monitoring of bee species using abis. In: Proceedings of the 15th International Symposium Informatics for Environmental Protection, vol. 1, pp. 425–430. ETH Zurich (2001)

    Google Scholar 

  8. Mayo, M., Watson, A.T.: Automatic species identification of live moths. Knowl.-Based Syst. 20(2), 195–202 (2007)

    Article  Google Scholar 

  9. Larios, N., et al.: Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects. Mach. Vision Appl. 19(2), 105–123 (2008). https://doi.org/10.1007/s00138-007-0086-y

    Article  Google Scholar 

  10. Gaston, K.J., O’Neill, M.A.: Automated species identification: why not? Philos. Trans. R. Soc. Lond. Series B: Biol. Sci. 359(1444), 655–667 (2004)

    Article  Google Scholar 

  11. Murase, H., Nayar, S.K.: Visual learning and recognition of 3-d objects from appearance. Int. J. Comput. Vis. 14, 5–24 (1995). https://doi.org/10.1007/BF01421486

    Article  Google Scholar 

  12. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7, 11–32 (1991). https://doi.org/10.1007/BF00130487

    Article  Google Scholar 

  13. Schiele, B., Crowley, J.L.: Object recognition using multidimensional receptive field histograms. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 610–619. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015571

    Chapter  Google Scholar 

  14. Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Technical report, Stanford Univ Ca Dept of Computer Science (1980)

    Google Scholar 

  15. Harris, C., Stephens, M., et al.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)

    Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vision 60(1), 63–86 (2004). https://doi.org/10.1023/B:VISI.0000027790.02288.f2

    Article  Google Scholar 

  17. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  18. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_18

    Chapter  Google Scholar 

  19. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–85 (2004)

    Article  Google Scholar 

  20. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  21. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  22. Ke, Y., Sukthankar, R.: Pca-sift: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–II. IEEE (2004)

    Google Scholar 

  23. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using affine-invariant regions. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 2, pp. II–II. IEEE (2003)

    Google Scholar 

  24. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 9, 891–906 (1991)

    Article  Google Scholar 

  25. Gool, L., Moons, T., Ungureanu, D.: Affine / photometric invariants for planar intensity patterns. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015574

    Chapter  Google Scholar 

  26. Wen, C., Guyer, D.E., Li, W.: Automated insect classification with combined global and local features for orchard management. In: 2009 Reno, Nevada, 21 June - 24 June 2009, p. 1. American Society of Agricultural and Biological Engineers (2009)

    Google Scholar 

  27. Zhang, D., Lu, G., et al.: A comparative study on shape retrieval using Fourier descriptors with different shape signatures. In: Proceedings of the International Conference on Intelligent Multimedia and Distance Education (ICIMADE01), pp. 1–9 (2001)

    Google Scholar 

  28. Ming-Kuei, H.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theor. 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  29. Haralick, R.M.: Texture features for image classification. IEEE Trans. Syst. Man. Cybern. 6(4), 269–285 (1976)

    Google Scholar 

  30. Rodenacker, K., Hense, B., Jütting, U., Gais, P.: Automatic analysis of aqueous specimens for phytoplankton structure recognition and population estimation. Microsc. Res. Tech. 69(9), 708–720 (2006)

    Article  Google Scholar 

  31. ChengluWen and Daniel Guyer: Image-based orchard insect automated identification and classification method. Comput. Electron. Agric. 89, 110–115 (2012)

    Article  Google Scholar 

  32. Bisgin, H., et al.: Comparing svm and ann based machine learning methods for species identification of food contaminating beetles. Sci. Rep. 8(1), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  33. Xia, D., Chen, P., Wang, B., Zhang, J., Xie, C.: Insect detection and classification based on an improved convolutional neural network. Sensors 18(12), 4169 (2018)

    Article  Google Scholar 

  34. Lim, S., Kim, S., Kim, D.: Performance effect analysis for insect classification using convolutional neural network. In: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 210–215. IEEE (2017)

    Google Scholar 

  35. Rustia, D.J.A., Lin, C.E., Chung, J.Y., Lin, T.T.: A real-time multi-class insect pest identification method using cascaded convolutional neural networks. In: 9th International Symposium on Machinery and Mechatronics for Agricultural and Biosystems Engineering (ISMAB), p. 67 (2018)

    Google Scholar 

  36. Liu, Z., Gao, J., Yang, G., Zhang, H., He, Y.: Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Sci. Rep. 6, 20410 (2016)

    Article  Google Scholar 

  37. Tree Insects, Forest Entomology @ Forestry Images. Insect Images. Geraadpleegd op 28 June 2019, van (2018). https://www.forestryimages.org/insects.cfm/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Imtiaz Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akter, R., Islam, M.S., Sohan, K., Ahmed, M.I. (2023). Insect Recognition and Classification Using Optimized Densely Connected Convolutional Neural Network. In: Laouar, M.R., Balas, V.E., Lejdel, B., Eom, S., Boudia, M.A. (eds) 12th International Conference on Information Systems and Advanced Technologies “ICISAT 2022”. ICISAT 2022. Lecture Notes in Networks and Systems, vol 624. Springer, Cham. https://doi.org/10.1007/978-3-031-25344-7_23

Download citation

Publish with us

Policies and ethics