Skip to main content

TransNet: Category-Level Transparent Object Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Transparent objects present multiple distinct challenges to visual perception systems. First, their lack of distinguishing visual features makes transparent objects harder to detect and localize than opaque objects. Even humans find certain transparent surfaces with little specular reflection or refraction, e.g. glass doors, difficult to perceive. A second challenge is that common depth sensors typically used for opaque object perception cannot obtain accurate depth measurements on transparent objects due to their unique reflective properties. Stemming from these challenges, we observe that transparent object instances within the same category (e.g. cups) look more similar to each other than to ordinary opaque objects of that same category. Given this observation, the present paper sets out to explore the possibility of category-level transparent object pose estimation rather than instance-level pose estimation. We propose TransNet, a two-stage pipeline that learns to estimate category-level transparent object pose using localized depth completion and surface normal estimation. TransNet is evaluated in terms of pose estimation accuracy on a recent, large-scale transparent object dataset and compared to a state-of-the-art category-level pose estimation approach. Results from this comparison demonstrate that TransNet achieves improved pose estimation accuracy on transparent objects and key findings from the included ablation studies suggest future directions for performance improvements. The project webpage is available at: https://progress.eecs.umich.edu/projects/transnet/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, J., et al.: Ghostpose*: multi-view pose estimation of transparent objects for robot hand grasping. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5749–5755. IEEE (2021)

    Google Scholar 

  2. Chen, D., Li, J., Wang, Z., Xu, K.: Learning canonical shape space for category-level 6d object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11973–11982 (2020)

    Google Scholar 

  3. Chen, K., Dou, Q.: SGPA: structure-guided prior adaptation for category-level 6D object pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2773–2782 (2021)

    Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  5. Chen, W., Jia, X., Chang, H.J., Duan, J., Shen, L., Leonardis, A.: FS-NET: fast shape-based network for category-level 6d object pose estimation with decoupled rotation mechanism. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1581–1590 (2021)

    Google Scholar 

  6. Chen, X., Zhang, H., Yu, Z., Opipari, A., Jenkins, O.C.: Clearpose: large-scale transparent object dataset and benchmark. arXiv preprint arXiv:2203.03890 (2022)

  7. Di, Y., et al.: GPV-pose: category-level object pose estimation via geometry-guided point-wise voting. arXiv preprint arXiv:2203.07918 (2022)

  8. Fan, Z., et al.: ACR-pose: adversarial canonical representation reconstruction network for category level 6d object pose estimation. arXiv preprint arXiv:2111.10524 (2021)

  9. Fang, H., Fang, H.S., Xu, S., Lu, C.: TRANSCG: a large-scale real-world dataset for transparent object depth completion and grasping. arXiv preprint arXiv:2202.08471 (2022)

  10. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  12. Ichnowski, J., Avigal, Y., Kerr, J., Goldberg, K.: DEX-NERF: using a neural radiance field to grasp transparent objects. arXiv preprint arXiv:2110.14217 (2021)

  13. Irshad, M.Z., Kollar, T., Laskey, M., Stone, K., Kira, Z.: Centersnap: single-shot multi-object 3d shape reconstruction and categorical 6d pose and size estimation. arXiv preprint arXiv:2203.01929 (2022)

  14. Jiang, X., Li, D., Chen, H., Zheng, Y., Zhao, R., Wu, L.: UNI6D: a unified cnn framework without projection breakdown for 6d pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11174–11184 (2022)

    Google Scholar 

  15. Kalra, A., Taamazyan, V., Rao, S.K., Venkataraman, K., Raskar, R., Kadambi, A.: Deep polarization cues for transparent object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8602–8611 (2020)

    Google Scholar 

  16. Khaing, M.P., Masayuki, M.: Transparent object detection using convolutional neural network. In: Zin, T.T., Lin, J.C.-W. (eds.) ICBDL 2018. AISC, vol. 744, pp. 86–93. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0869-7_10

    Chapter  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Lai, P.J., Fuh, C.S.: Transparent object detection using regions with convolutional neural network. In: IPPR Conference on Computer Vision, Graphics, and Image Processing, vol. 2 (2015)

    Google Scholar 

  19. Li, X., Wang, H., Yi, L., Guibas, L.J., Abbott, A.L., Song, S.: Category-level articulated object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3706–3715 (2020)

    Google Scholar 

  20. Lin, J., Wei, Z., Li, Z., Xu, S., Jia, K., Li, Y.: DUALPOSENET: category-level 6D object pose and size estimation using dual pose network with refined learning of pose consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3560–3569 (2021)

    Google Scholar 

  21. Lin, Z.H., Huang, S.Y., Wang, Y.C.F.: Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  22. Liu, L., et al.: On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)

  23. Liu, X., Iwase, S., Kitani, K.M.: STEREOBJ-1M: large-scale stereo image dataset for 6d object pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10870–10879 (2021)

    Google Scholar 

  24. Liu, X., Jonschkowski, R., Angelova, A., Konolige, K.: KeyPose: multi-view 3D labeling and keypoint estimation for transparent objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11602–11610 (2020)

    Google Scholar 

  25. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  26. Lysenkov, I., Eruhimov, V., Bradski, G.: Recognition and pose estimation of rigid transparent objects with a kinect sensor. Robotics 273(273–280), 2 (2013)

    Google Scholar 

  27. Phillips, C.J., Lecce, M., Daniilidis, K.: Seeing glassware: from edge detection to pose estimation and shape recovery. In: Robotics: Science and Systems, vol. 3, p. 3 (2016)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Sajjan, S., et al.: Clear Grasp: 3D shape estimation of transparent objects for manipulation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3634–3642. IEEE (2020)

    Google Scholar 

  30. Tang, Y., Chen, J., Yang, Z., Lin, Z., Li, Q., Liu, W.: Depthgrasp: depth completion of transparent objects using self-attentive adversarial network with spectral residual for grasping. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5710–5716. IEEE (2021)

    Google Scholar 

  31. Tian, M., Ang, M.H., Lee, G.H.: Shape prior deformation for categorical 6D object pose and size estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 530–546. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_32

    Chapter  Google Scholar 

  32. Tian, M., Pan, L., Ang, M.H., Lee, G.H.: Robust 6d object pose estimation by learning rgb-d features. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6218–6224. IEEE (2020)

    Google Scholar 

  33. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(04), 376–380 (1991)

    Article  Google Scholar 

  34. Wang, C., et al.: Densefusion: 6d object pose estimation by iterative dense fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3343–3352 (2019)

    Google Scholar 

  35. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6d object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)

    Google Scholar 

  36. Weng, T., Pallankize, A., Tang, Y., Kroemer, O., Held, D.: Multi-modal transfer learning for grasping transparent and specular objects. IEEE Rob. Autom. Lett. 5(3), 3791–3798 (2020)

    Article  Google Scholar 

  37. Xie, E., Wang, W., Wang, W., Ding, M., Shen, C., Luo, P.: Segmenting transparent objects in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 696–711. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_41

    Chapter  Google Scholar 

  38. Xu, C., Chen, J., Yao, M., Zhou, J., Zhang, L., Liu, Y.: 6DoF pose estimation of transparent object from a single RGB-D image. Sensors 20(23), 6790 (2020)

    Article  Google Scholar 

  39. Xu, H., Wang, Y.R., Eppel, S., Aspuru-Guzik, A., Shkurti, F., Garg, A.: Seeing glass: joint point cloud and depth completion for transparent objects. arXiv preprint arXiv:2110.00087 (2021)

  40. Xu, Y., Nagahara, H., Shimada, A., Taniguchi, R.I.: Transcut: transparent object segmentation from a light-field image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3442–3450 (2015)

    Google Scholar 

  41. Yong, H., Huang, J., Hua, X., Zhang, L.: Gradient centralization: a new optimization technique for deep neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 635–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_37

    Chapter  Google Scholar 

  42. You, Y., Shi, R., Wang, W., Lu, C.: CPPF: towards robust category-level 9D pose estimation in the wild. arXiv preprint arXiv:2203.03089 (2022)

  43. Zhang, M., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: k steps forward, 1 step back. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  44. Zhou, Z., Chen, X., Jenkins, O.C.: Lit: Light-field inference of transparency for refractive object localization. IEEE Rob. Autom. Lett. 5(3), 4548–4555 (2020)

    Google Scholar 

  45. Zhou, Z., Pan, T., Wu, S., Chang, H., Jenkins, O.C.: Glassloc: plenoptic grasp pose detection in transparent clutter. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4776–4783. IEEE (2019)

    Google Scholar 

  46. Zhou, Z., Sui, Z., Jenkins, O.C.: Plenoptic monte carlo object localization for robot grasping under layered translucency. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  47. Zhu, L., et al.: Rgb-d local implicit function for depth completion of transparent objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4649–4658 (2021)

    Google Scholar 

  48. Zou, L., Huang, Z., Gu, N., Wang, G.: 6d-vit: category-level 6d object pose estimation via transformer-based instance representation learning. arXiv preprint arXiv:2110.04792 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Opipari, A., Chen, X., Zhu, J., Yu, Z., Jenkins, O.C. (2023). TransNet: Category-Level Transparent Object Pose Estimation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25085-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25084-2

  • Online ISBN: 978-3-031-25085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics