Skip to main content

Domain-Conditioned Normalization for Test-Time Domain Generalization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13808))

Included in the following conference series:

Abstract

Domain generalization aims to train a robust model on multiple source domains that generalizes well to unseen target domains. While considerable attention has focused on training domain generalizable models, a few recent studies have shifted the attention to test time, i.e., leveraging test samples for better target generalization. To this end, this paper proposes a novel test-time domain generalization method, Domain Conditioned Normalization (DCN), to infer the normalization statistics of the target domain from only a single test sample. In order to learn to predict the normalization statistics, DCN adopts a meta-learning framework and simulates the inference process of the normalization statistics at training. Extensive experimental results have shown that DCN brings consistent improvements to many state-of-the-art domain generalization methods on three widely adopted benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: MetaReg: towards domain generalization using meta-regularization. In: Advances in Neural Information Processing Systems, vol. 31, pp. 998–1008 (2018)

    Google Scholar 

  2. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving Jigsaw puzzles. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)

    Google Scholar 

  3. Chang, W.G., You, T., Seo, S., Kwak, S., Han, B.: Domain-specific batch normalization for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7354–7362 (2019)

    Google Scholar 

  4. Chen, Y., Wang, Y., Pan, Y., Yao, T., Tian, X., Mei, T.: A style and semantic memory mechanism for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9164–9173 (2021)

    Google Scholar 

  5. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  6. Du, Y., Zhen, X., Shao, L., Snoek, C.G.: MetaNorm: learning to normalize few-shot batches across domains. In: International Conference on Learning Representations (2020)

    Google Scholar 

  7. Dubey, A., Ramanathan, V., Pentland, A., Mahajan, D.: Adaptive methods for real-world domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14340–14349 (2021)

    Google Scholar 

  8. Fan, X., Wang, Q., Ke, J., Yang, F., Gong, B., Zhou, M.: Adversarially adaptive normalization for single domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8208–8217 (2021)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_8

    Chapter  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  13. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-agnostic domain generalization. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  14. Jia, S., Chen, D.J., Chen, H.T.: Instance-level meta normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4865–4873 (2019)

    Google Scholar 

  15. Khurana, A., Paul, S., Rai, P., Biswas, S., Aggarwal, G.: SITA: single image test-time adaptation. arXiv preprint arXiv:2112.02355 (2021)

  16. Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: SelfReg: self-supervised contrastive regularization for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9619–9628 (2021)

    Google Scholar 

  17. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  18. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  19. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning (2018)

    Google Scholar 

  20. Li, P., Li, D., Li, W., Gong, S., Fu, Y., Hospedales, T.M.: A simple feature augmentation for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8886–8895 (2021)

    Google Scholar 

  21. Li, S., Xie, B., Lin, Q., Liu, C.H., Huang, G., Wang, G.: Generalized domain conditioned adaptation network. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  22. Li, Y., et al.: Deep domain generalization via conditional invariant adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 624–639 (2018)

    Google Scholar 

  23. Liang, S., Huang, Z., Liang, M., Yang, H.: Instance enhancement batch normalization: an adaptive regulator of batch noise. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4819–4827 (2020)

    Google Scholar 

  24. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11749–11756 (2020)

    Google Scholar 

  25. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5715–5725 (2017)

    Google Scholar 

  26. Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., Snoek, J.: Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv preprint arXiv:2006.10963 (2020)

  27. Nam, H., Kim, H.E.: Batch-instance normalization for adaptively style-invariant neural networks. arXiv preprint arXiv:1805.07925 (2018)

  28. Seo, S., Suh, Y., Kim, D., Kim, G., Han, J., Han, B.: Learning to optimize domain specific normalization for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 68–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_5

    Chapter  Google Scholar 

  29. Shahtalebi, S., Gagnon-Audet, J.C., Laleh, T., Faramarzi, M., Ahuja, K., Rish, I.: Sand-mask: an enhanced gradient masking strategy for the discovery of invariances in domain generalization. arXiv preprint arXiv:2106.02266 (2021)

  30. Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi, S.: Generalizing across domains via cross-gradient training. arXiv preprint arXiv:1804.10745 (2018)

  31. Shi, Y., et al.: Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937 (2021)

  32. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  33. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: International Conference on Machine Learning, pp. 9229–9248. PMLR (2020)

    Google Scholar 

  34. Tang, Z., Gao, Y., Zhu, Y., Zhang, Z., Li, M., Metaxas, D.N.: CrossNorm and SelfNorm for generalization under distribution shifts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 52–61 (2021)

    Google Scholar 

  35. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011, pp. 1521–1528. IEEE (2011)

    Google Scholar 

  36. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  37. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020)

  38. Wang, J., Lan, C., Liu, C., Ouyang, Y., Zeng, W., Qin, T.: Generalizing to unseen domains: a survey on domain generalization. arXiv preprint arXiv:2103.03097 (2021)

  39. Wang, S., Yu, L., Li, C., Fu, C.-W., Heng, P.-A.: Learning from extrinsic and intrinsic supervisions for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 159–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_10

    Chapter  Google Scholar 

  40. Wang, X., Jin, Y., Long, M., Wang, J., Jordan, M.: Transferable normalization: towards improving transferability of deep neural networks. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  41. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A Fourier-based framework for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14383–14392 (2021)

    Google Scholar 

  42. You, F., Li, J., Zhao, Z.: Test-time batch statistics calibration for covariate shift. arXiv preprint arXiv:2110.04065 (2021)

  43. Zhang, X., Cui, P., Xu, R., Zhou, L., He, Y., Shen, Z.: Deep stable learning for out-of-distribution generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5372–5382 (2021)

    Google Scholar 

  44. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. arXiv preprint arXiv:2103.02503 (2021)

  45. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Deep domain-adversarial image generation for domain generalisation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 13025–13032 (2020)

    Google Scholar 

  46. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

  47. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. arXiv preprint arXiv:2104.02008 (2021)

Download references

Acknowledgement

This work is supported by the National Key R &D Program of China (No. 2019YFB1804304), 111 plan (No. BP0719010), and STCSM (No. 18DZ2270700, No. 21DZ1100100), and State Key Laboratory of UHD Video and Audio Production and Presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxuan Jiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 146 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y. et al. (2023). Domain-Conditioned Normalization for Test-Time Domain Generalization. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25085-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25084-2

  • Online ISBN: 978-3-031-25085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics