Skip to main content

Characterization of AI Model Configurations for Model Reuse

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13804))

Included in the following conference series:

Abstract

With the widespread creation of artificial intelligence (AI) models in biosciences, bio-medical researchers are reusing trained AI models from other applications. This work is motivated by the need to characterize trained AI models for reuse based on metrics derived from optimization curves captured during model training. Such AI model characterizations can aid future model accuracy refinement, inform users about model hyper-parameter sensitivity, and assist in model reuse according to multi-purpose objectives. The challenges lie in understanding relationships between trained AI models and optimization curves, defining and validating quantitative AI model metrics, and disseminating metrics with trained AI models. We approach these challenges by analyzing optimization curves generated for image segmentation and classification tasks to assist in a multi-objective reuse of AI models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://doi.org/10.5281/zenodo.5898685. https://www.tensorflow.org/, software available from tensorflow.org

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework (2019)

    Google Scholar 

  3. Bajcsy, P., Feldman, S., Majurski, M., Snyder, K., Brady, M.: Approaches to training ai-based multi-class semantic image segmentation. J. Microscopy 279(2), 98–113 (2020). https://doi.org/10.1111/jmi.12906. https://pubmed.ncbi.nlm.nih.gov/32406521/

  4. Bajcsy, P., Schaub, N.J., Majurski, M.: Designing trojan detectors in neural networks using interactive simulations. Appl. Sci. 11(4) (2021). https://doi.org/10.3390/app11041865. https://www.mdpi.com/2076-3417/11/4/1865

  5. Community: Open neural network exchange (ONNX) (2022). https://onnx.ai/

  6. Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J.W., Wallach, H., III, H.D., Crawford, K.: Datasheets for datasets. arXiv 1803.09010 (2021)

    Google Scholar 

  7. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J.E., Sculley, D. (eds.): Google Vizier: A Service for Black-Box Optimization (2017). http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization

  8. Haibe-Kains, B., et al.: Transparency and reproducibility in artificial intelligence. Nature 586(7829), E14–E16 (2020). https://doi.org/10.1038/s41586-020-2766-y. https://aclanthology.org/Q18-1041

  9. Holland, S., Hosny, A., Newman, S., Joseph, J., Chmielinski, K.: The dataset nutrition label: A framework to drive higher data quality standards. arXiv 1805.03677 (2018)

    Google Scholar 

  10. IARPA: Trojans in Artificial Intelligence (TrojAI) (2020). https://pages.nist.gov/trojai/, https://www.iarpa.gov/index.php/research-programs/trojai

  11. Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., Xu, Y.: Autotune. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 2018. https://doi.org/10.1145/3219819.3219837

  12. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced research). http://www.cs.toronto.edu/kriz/cifar.html

  13. Lin, T.Y., et al.: Microsoft COCO: common objects in context. arXiv 1405.0312 (2014). http://arxiv.org/abs/1405.0312

  14. Long, J., Shelhamer, E., Darrell, T.: Experiment manager (2022). https://www.mathworks.com/help/deeplearning/ref/experimentmanager-app.html

  15. Mitchell, M., et al.: Model cards for model reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency, January 2019. https://doi.org/10.1145/3287560.3287596

  16. NIST: Data-driven simulations of measured neutron interferometric microscopy images (2022). https://www.nist.gov/programs-projects/interferometry-infer-neutron-interferometric-microscopy-small-forces-and

  17. NIST: Fluorescent microscopy images of A-10 rat smooth muscle cells and NIH-3T3 mouse fibro-blasts (2022). https://isg.nist.gov/deepzoomweb/data/dissemination

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  19. Ranjit, M., Ganapathy, G., Sridhar, K., Arumugham, V.: Efficient deep learning hyperparameter tuning using cloud infrastructure: Intelligent distributed hyperparameter tuning with bayesian optimization in the cloud. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 520–522. IEEE Computer Society, Los Alamitos, July 2019. https://doi.org/10.1109/CLOUD.2019.00097, https://doi.ieeecomputersociety.org/10.1109/CLOUD.2019.00097

  20. Schaub, N., et al.: Deep learning predicts function of live retinal pigment epithelium from quantitative microscopy. J. Clin. Invest. 130(2), 1010–1023 (2020). https://doi.org/10.1172/JCI131187, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994191/

  21. Yang, K., Stoyanovich, J., Asudeh, A., Howe, B., Jagadish, H., Miklau, G.: A nutritional label for rankings. Proceedings of the 2018 International Conference on Management of Data, May 2018. https://doi.org/10.1145/3183713.3193568

  22. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-bench-101: Towards reproducible neural architecture search. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7105–7114. PMLR, Long Beach, California, USA (09–15 Jun 2019), http://proceedings.mlr.press/v97/ying19a.html

  23. You, S., et al.: A review on artificial intelligence for grid stability assessment. In: 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6 (2020). https://doi.org/10.1109/SmartGridComm47815.2020.9302990

Download references

Acknowledgments

The funding for Peter Bajcsy, Michael Majurski, and Walid Keyrouz was partially provided from the IARPA project: IARPA-20001-D2020-2007180011. We would also like to thank Craig Greenberg, Ivy Liang, and Daniel Gao for providing very insightful feedback and contributing to the code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bajcsy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bajcsy, P., Majurski, M., Cleveland IV, T.E., Carrasco, M., Keyrouz, W. (2023). Characterization of AI Model Configurations for Model Reuse. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25069-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25068-2

  • Online ISBN: 978-3-031-25069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics