Skip to main content

Data Lifecycle Management in Evolving Input Distributions for Learning-based Aerospace Applications

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

As input distributions evolve over a mission lifetime, maintaining performance of learning-based models becomes challenging. This paper presents a framework to incrementally retrain a model by selecting a subset of test inputs to label, which allows the model to adapt to changing input distributions. Algorithms within this framework are evaluated based on (1) model performance throughout mission lifetime and (2) cumulative costs associated with labeling and model retraining. We provide an open-source benchmark of a satellite pose estimation model trained on images of a satellite in space and deployed in novel scenarios (e.g., different backgrounds or misbehaving pixels), where algorithms are evaluated on their ability to maintain high performance by retraining on a subset of inputs. We also propose a novel algorithm to select a diverse subset of inputs for labeling, by characterizing the information gain from an input using Bayesian uncertainty quantification and choosing a subset that maximizes collective information gain using concepts from batch active learning. We show that our algorithm outperforms others on the benchmark, e.g., achieves comparable performance to an algorithm that labels 100% of inputs, while only labeling 50% of inputs, resulting in low costs and high performance over the mission lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code for the benchmark and our experiments is available at https://github.com/StanfordASL/data-lifecycle-management.

References

  1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

    Article  Google Scholar 

  2. Chen, B., Cao, J., Parra, A., Chin, T.J.: Satellite pose estimation with deep landmark regression and nonlinear pose refinement. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  3. Doran, G., Daigavane, A., Wagstaff, K.: Resource consumption and radiation tolerance assessment for data analysis algorithms onboard spacecraft. IEEE Trans. Aerosp. Electron. Syst. 58, 5180–5189 (2022)

    Article  Google Scholar 

  4. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 562–577. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_37

    Chapter  Google Scholar 

  5. Grzenda, M., Gomes, H.M., Bifet, A.: Delayed labelling evaluation for data streams. Data Min. Knowl. Disc. 34(5), 1237–1266 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, Y., Schuurmans, D.: Discriminative batch mode active learning. In: Conference on Neural Information Processing Systems (2007)

    Google Scholar 

  7. Hoi, S.C., Jin, R., Zhu, J., Lyu, M.R.: Batch mode active learning and its application to medical image classification. In: International Conference on Machine Learning (2006)

    Google Scholar 

  8. Hsu, Y.C., Liu, Y.C., Kira, Z.: Re-evaluating continual learning scenarios: a categorization and case for strong baselines. In: Conference on Neural Information Processing Systems (2018)

    Google Scholar 

  9. Kisantal, M., Sharma, S., Park, T.H., Izzo, D., Märtens, M., D’Amico, S.: Satellite pose estimation challenge: dataset, competition design, and results. IEEE Trans. Aerosp. Electron. Syst. 56(5), 4083–4098 (2020)

    Article  Google Scholar 

  10. Koh, P.W., et al.: WILDS: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning (2021)

    Google Scholar 

  11. Lin, Z., Shi, J., Pathak, D., Ramanan, D.: The CLEAR benchmark: continual learning on real-world imagery. In: Conference on Neural Information Processing Systems - Datasets and Benchmarks Track (2021)

    Google Scholar 

  12. Murray, G., Bourlai, T., Spolaor, M.: Mask R-CNN: detection performance on SPEED spacecraft with image degradation. In: IEEE International Conference on Big Data (2021)

    Google Scholar 

  13. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: A review. Neural Netw. 113, 54–71 (2019)

    Article  Google Scholar 

  14. Pinsler, R., Gordon, J., Nalisnick, E., Hernández-Lobato, J.M.: Bayesian batch active learning as sparse subset approximation. In: Conference on Neural Information Processing Systems (2019)

    Google Scholar 

  15. Poghosyan, A., Golkar, A.: CubeSat evolution: analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci. 88, 59–83 (2017)

    Article  Google Scholar 

  16. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: International Conference on Machine Learning (2001)

    Google Scholar 

  17. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018)

    Google Scholar 

  18. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Sharma, A., Azizan, N., Pavone, M.: Sketching curvature for efficient out-of-distribution detection for deep neural networks. In: Proceedings of Conference on Uncertainty in Artificial Intelligence (2021)

    Google Scholar 

  20. Slingerland, P., et al.: Adapting a trusted AI framework to space mission autonomy. In: IEEE Aerospace Conference (2022)

    Google Scholar 

  21. Weiher, H., Mabry, D.J., Utter, A.C.: Slingshot: in-space modularity test platform. In: AIAA Aerospace Sciences Meeting (2022)

    Google Scholar 

  22. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  23. Wellhausen, L., Ranftl, R., Hutter, M.: Safe robot navigation via multi-modal anomaly detection. IEEE Robot. Autom. Lett. 5(2), 1326–1333 (2020)

    Article  Google Scholar 

  24. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey (2021). arxiv.org:2110.11334

  25. Yang, Y., Loog, M.: Active learning using uncertainty information. In: IEEE International Conference on Pattern Recognition (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by The Aerospace Corporation’s University Partnership Program, and by the Stanford Graduate Fellowship (SGF). The NASA University Leadership initiative (grant #80NSSC20M0163) provided funds to assist the authors with their research, but this article solely reflects the opinions and conclusions of its authors and not any NASA entity. The authors would like to thank Rohan Sinha and the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somrita Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, S., Sharma, A., Schmerling, E., Spolaor, M., Nemerouf, M., Pavone, M. (2023). Data Lifecycle Management in Evolving Input Distributions for Learning-based Aerospace Applications. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics