Abstract
The Digital Twin (DT) is often used in environments characterized by uncertainty and complexity, where operating conditions are prone to variability based on external and internal factors. Thus, the literature about DT emphasizes the importance, limitations, and absence of uncertainty quantification. However, there is no explicit review discussing uncertainty in complex systems and within the digital twin model. Such an explicit review could improve the conception, construction, and utilization of DT in environments that are both dynamic and stochastic. Thus, this article aims to (1) describe how a DT can help manage uncertainties in a dynamic system, and (2) explain how DT should deal with uncertainties inside the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wagg, D., Worden, K., Barthorpe, R., Gardner, P.: Digital twins: state-of-the-art future directions for modelling and simulation in engineering dynamics applications. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B Mech. Eng. 6 (2020). https://doi.org/10.1115/1.4046739
Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3), 567–572 (2015)
Knapp, G.L., et al.: Building blocks for a digital twin of additive manufacturing. Acta Mater. 135, 390–399 (2017). https://doi.org/10.1016/j.actamat.2017.06.039
Cerrone, A., Hochhalter, J., Heber, G., Ingraffea, A.: On the effects of modeling as-manufactured geometry: toward digital twin. Int. J. Aerosp. Eng. vol. 2014 (2014). https://doi.org/10.1155/2014/439278
Seshadri, B.R., Krishnamurthy, T.: Structural health management of damaged aircraft structures using the digital twin concept (2017). https://doi.org/10.2514/6.2017-1675
Li, C., Mahadevan, S., Ling, Y., Choze, S., Wang, L.: Dynamic bayesian network for aircraft wing health monitoring digital twin. AIAA J. 55, 1–12 (2017). https://doi.org/10.2514/1.J055201
Islavath, S.R., Deb, D., Kumar, H.: Life cycle analysis and damage prediction of a longwall powered support using 3D numerical modelling techniques. Arab. J. Geosci. 12(14), 1–15 (2019). https://doi.org/10.1007/s12517-019-4574-y
Erol, T., Mendi, A.F., Doğan, D.: The digital twin revolution in healthcare. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–7 (2020). https://doi.org/10.1109/ISMSIT50672.2020.9255249
Karakra, A., Fontanili, F., Lamine, E., Lamothe, J.: HospiT’Win: a predictive simulation-based digital twin for patients pathways in hospital. In: 2019 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4 (2019). https://doi.org/10.1109/BHI.2019.8834534
Patrone, C., Galli, G., Revetria, R.: A state of the art of digital twin and simulation supported by data mining in the healthcare sector. In: Advancing Technology Industrialization Through Intelligent Software Methodologies, Tools and Techniques, pp. 605–615 (2019). https://doi.org/10.3233/FAIA190084
Ullah, A.S.: Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Adv. Eng. Inform. 39, 1–13 (2019)
Semeraro, C., Lezoche, M., Panetto, H., Dassisti, M.: Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021). https://doi.org/10.1016/j.compind.2021.103469
Liu, Z., Meyendorf, N., Mrad, N.: The role of data fusion in predictive maintenance using digital twin. AIP Conf. Proc. 1949(1), 020023 (2018). https://doi.org/10.1063/1.5031520
Zhuang, C., Liu, J., Xiong, H.: Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int. J. Adv. Manuf. Technol. 96(1–4), 1149–1163 (2018). https://doi.org/10.1007/s00170-018-1617-6
Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in cyber-physical systems: a conceptual model. In: Wąsowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42061-5_16
Schleich, B., Anwer, N., Mathieu, L., Wartz, S.: Shaping the digital twin for design and production engineering, CIRP Ann. 66, 141–144 (2017). https://doi.org/10.1016/j.cirp.2017.04.040
Morse, E., et al.: Tolerancing: managing uncertainty from conceptual design to final product. CIRP Ann. 67(2), 695–717 (2018). https://doi.org/10.1016/j.cirp.2018.05.009
Walker, W.E., et al.: Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 4(1), 5–17 (2003). https://doi.org/10.1076/iaij.4.1.5.16466
Pistikopoulos, E.N.: Uncertainty in process design and operations. Comput. Chem. Eng. 19, 553–563 (1995). https://doi.org/10.1016/0098-1354(95)87094-6
Zonderland, M.E., Boucherie, R.J., Litvak, N., Vleggeert-Lankamp, C.L.A.M.: Planning and scheduling of semi-urgent surgeries. Health Care Manag Sci. 13(3), 256–267 (2010). https://doi.org/10.1007/s10729-010-9127-6
Milliken, F.J.: Three types of perceived uncertainty about the environment: state effect, and response uncertainty. Acad. Manage. Rev. 12(1), 133–143 (1987). https://doi.org/10.5465/amr.1987.4306502
Bradac, J.J.: Theory comparison: uncertainty reduction, problematic integration, uncertainty management, and other curious constructs. J. Commun. 51(3), 456–476 (2001). https://doi.org/10.1111/j.1460-2466.2001.tb02891.x
Purdy, G.: ISO 31000:2009 - setting a new standard for risk management. Risk Anal. 30(6), 881–886 (2010). https://doi.org/10.1111/j.1539-6924.2010.01442.x
Silva, A.A., Ferreira, F.C.M.: Uncertainty, flexibility and operational performance of companies: modelling from the perspective of managers. Acad. Manag. Rev. 18, 11–38 (2017). https://doi.org/10.1590/1678-69712017/administracao.v18n4p11-38
Lin, L., Bao, H., Dinh, N.: Uncertainty quantification and software risk analysis for digital twins in the nearly autonomous management and control systems: a review. Ann. Nucl. Energy 160, 108362 (2021). https://doi.org/10.1016/j.anucene.2021.108362
Mullins, J., Ling, Y., Mahadevan, S., Sun, L., Strachan, A.: Separation of aleatory and epistemic uncertainty in probabilistic model validation. Reliab. Eng. Syst. Saf. 147, 49–59 (2016). https://doi.org/10.1016/j.ress.2015.10.003
Graves, S.C.: Uncertainty and production planning. In: Kempf, K.G., Keskinocak, P., Uzsoy, R. (eds.) Planning Production and Inventories in the Extended Enterprise. ISORMS, vol. 151, pp. 83–101. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-6485-4_5
Angkiriwang, R., Pujawan, I.N., Santosa, B.: Managing uncertainty through supply chain flexibility: reactive vs. proactive approaches. Prod. Manuf. Res. 2(1), 50–70 (2014). https://doi.org/10.1080/21693277.2014.882804
Zhu, S., Fan, W., Yang, S., Pei, J., Pardalos, P.M.: Operating room planning and surgical case scheduling: a review of literature. J. Comb. Optim. 37(3), 757–805 (2018). https://doi.org/10.1007/s10878-018-0322-6
Escobet, T., Bregon, A., Pulido, B., Puig, V. (eds.): Fault Diagnosis of Dynamic Systems. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17728-7
Kennedy, M., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. B 63, 425–464 (2001). https://doi.org/10.1111/1467-9868.00294
Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)
Begg, S.H., Welsh, M.B., Bratvold, R.B.: Uncertainty vs. variability: what’s the difference and why is it important? (2014). https://doi.org/10.2118/169850-MS
Agnusdei, G.P., Elia, V., Gnoni, M.G.: A classification proposal of digital twin applications in the safety domain. Comput. Ind. Eng. 154 (2021). https://doi.org/10.1016/j.cie.2021.107137
Bouloiz, H., Garbolino, E., Tkiouat, M., Guarnieri, F.: A system dynamics model for behavioral analysis of safety conditions in a chemical storage unit. Saf. Sci. 58, 32–40 (2013). https://doi.org/10.1016/j.ssci.2013.02.013
Varshney, K.R.: Engineering safety in machine learning. In: 2016 Information Theory and Applications Workshop (ITA), pp. 1–5 (2016). https://doi.org/10.1109/ITA.2016.7888195
Ritto, T.G., Rochinha, F.A.: Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech. Syst. Signal Process. 155, 107614 (2021). https://doi.org/10.1016/j.ymssp.2021.107614
Karve, P.M., Guo, Y., Kapusuzoglu, B., Mahadevan, S., Haile, M.A.: Digital twin approach for damage-tolerant mission planning under uncertainty. Eng. Fract. Mech. 225, 106766 (2020). https://doi.org/10.1016/j.engfracmech.2019.106766
Li, C., Mahadevan, S., Ling, Y., Wang, L., Choze, S.: A dynamic Bayesian network approach for digital twin. In: 19th AIAA Non-Deterministic Approaches Conference, American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-1566
Dröder, K., Bobka, P., Germann, T., Gabriel, F., Dietrich, F.: A machine learning-enhanced digital twin approach for human-robot-collaboration. Procedia CIRP 76, 187–192 (2018). https://doi.org/10.1016/j.procir.2018.02.010
Priyanka, E.B., Thangavel, S., Gao, X.-Z., Sivakumar, N.S.: Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques. J. Ind. Inf. Integr. 100272 (2021). https://doi.org/10.1016/j.jii.2021.100272
Yan, Q., Wang, H., Wu, F.: Digital twin-enabled dynamic scheduling with preventive maintenance using a double-layer Q-learning algorithm. Comput. Oper. Res. 144, 105823 (2022). https://doi.org/10.1016/j.cor.2022.105823
Zhang, M., Tao, F., Nee, A.Y.C.: Digital Twin Enhanced Dynamic Job-Shop Scheduling. J. Manuf. Syst. 58, 146–156 (2021). https://doi.org/10.1016/j.jmsy.2020.04.008
Negri, E., Pandhare, V., Cattaneo, L., Singh, J., Macchi, M., Lee, J.: Field-synchronized Digital Twin framework for production scheduling with uncertainty. J. Intell. Manuf. 32(4), 1207–1228 (2020). https://doi.org/10.1007/s10845-020-01685-9
Luo, D., Thevenin, S., Dolgui, A.: A digital twin-driven methodology for material resource planning under uncertainties. In: Dolgui, A., Bernard, A., Lemoine, D., vonCieminski, G., Romero, D. (eds.) APMS 2021. IAICT, vol. 630, pp. 321–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85874-2_34
Ghosh, A.K., Ullah, A.S., Kubo, A.: Hidden Markov model-based digital twin construction for futuristic manufacturing systems. AIEDAM 33(3), 317–331 (2019). https://doi.org/10.1017/S089006041900012X
Iñigo, B., Colinas-Armijo, N., LópezdeLacalle, L.N., Aguirre, G.: Digital twin-based analysis of volumetric error mapping procedures. Precis. Eng. 72, 823–836 (2021). https://doi.org/10.1016/j.precisioneng.2021.07.017
Wang, J., Ye, L., Gao, R.X., Li, C., Zhang, L.: Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 57(12), 3920–3934 (2019). https://doi.org/10.1080/00207543.2018.1552032
Sapronov, A., et al.: Tuning hybrid distributed storage system digital twins by reinforcement learning. Adv. Syst. Sci. Appl. 18(4), Art. no 4 (2018). https://doi.org/10.25728/assa.2018.18.4.660
Cronrath, C., Aderiani, A.R., Lennartson, B.: Enhancing digital twins through reinforcement learning. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 293–298 (2019). https://doi.org/10.1109/COASE.2019.8842888
Müller, M.S., Jazdi, N., Weyrich, M.: Self-improving models for the intelligent digital twin: towards closing the reality-to-simulation gap. IFAC-PapersOnLine 55(2), 126–131 (2022). https://doi.org/10.1016/j.ifacol.2022.04.181
Alves de Araujo Junior, C.A., et al.: Digital twins of the water cooling system in a power plant based on fuzzy logic. Sensors 21(20) (2021). https://doi.org/10.3390/s21206737
Luo, W., Hu, T., Zhu, W., Tao, F.: Digital twin modeling method for CNC machine tool, p. 4 (2018). https://doi.org/10.1109/ICNSC.2018.8361285
Sleiti, A.K., Kapat, J.S., Vesely, L.: Digital twin in energy industry: proposed robust digital twin for power plant and other complex capital-intensive large engineering systems. Energy Rep. 8, 3704–3726 (2022). https://doi.org/10.1016/j.egyr.2022.02.305
Balta, E.C., Tilbury, D.M., Barton, K.: A Digital twin framework for performance monitoring and anomaly detection in fused deposition modeling. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, pp. 823–829 (2019). https://doi.org/10.1109/COASE.2019.8843166
Millwater, H., Ocampo, J., Crosby, N.: Probabilistic methods for risk assessment of airframe DT structure. Eng. Fract. Mech. vol. 221 (2019). https://doi.org/10.1016/j.engfracmech.2019.106674
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abdoune, F., Rifi, L., Fontanili, F., Cardin, O. (2023). Handling Uncertainties with and Within Digital Twins. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2022. Studies in Computational Intelligence, vol 1083. Springer, Cham. https://doi.org/10.1007/978-3-031-24291-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-24291-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-24290-8
Online ISBN: 978-3-031-24291-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)