Skip to main content

Constraint Satisfaction, Graph Isomorphism, and the Pebbling Comonad

  • Chapter
  • First Online:
Samson Abramsky on Logic and Structure in Computer Science and Beyond

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 25))

  • 198 Accesses

Abstract

The pebbling comonad introduced in (Abramsky, Dawar, Wang 2017) gives a categorical account relating natural approximations of homomorphism and isomorphism. On the one hand we have the local consistency algorithms that approximate homomorphism and on the other the Weisfeiler–Leman algorithms that approximate isomorphism. Both of these have elegant characterizations as pebble games. In this paper we give a brief tour through the background that led to the definition of the pebbling comonad and look at some prospects it offers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, \(\wp (X)\) denotes the powerset of X.

References

  • Abramsky, S., Dawar, A., & Wang, P. (2017). The pebbling comonad in finite model theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–12).

    Google Scholar 

  • Abramsky, S., & Tzevelekos, N. (2010). Introduction to categories and categorical logic. In New structures for physics (pp. 3–94). Springer.

    Google Scholar 

  • Atserias, A., Bulatov, A., & Dawar, A. (2009). Affine systems of equations and counting infinitary logic. Theoretical Computer Science, 410(18), 1666–1683.

    Article  Google Scholar 

  • Atserias, A., Dawar, A., & Kolaitis, P. G. (2006). On preservation under homomorphisms and unions of conjunctive queries. Journal of the ACM, 53, 208–237.

    Article  Google Scholar 

  • Babai, L. (2016). Graph isomorphism in quasipolynomial time [extended abstract]. In Proceeding of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC (pp. 684–697).

    Google Scholar 

  • Babai, L., ErdÅ‘s, P., & Selkow, S. M. (1980). Random graph isomorphism. SIAM Journal on Computing, 9, 628–635.

    Article  Google Scholar 

  • Babai, L., Grigoryev, D. Yu., & Mount, D. M. (1982). Isomorphism of graphs with bounded eigenvalue multiplicity. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC) (pp. 310–324).

    Google Scholar 

  • Babai, L., & Luks, E. M. (1983). Canonical labeling of graphs. In Proceedings of the 15th ACM Symposium on the Theory of Computing (pp. 171–183).

    Google Scholar 

  • Barto, L., & Kozik, M. (2014). Constraint satisfaction problems solvable by local consistency methods. Journal of the ACM, 61.

    Google Scholar 

  • Barwise, J. (1977). On Moschovakis closure ordinals. Journal of Symbolic Logic, 42, 292–296.

    Article  Google Scholar 

  • Bodlaender, H. L. (1990). Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms, 11, 631–643.

    Article  Google Scholar 

  • Bulatov, A. A. (2017). A dichotomy theorem for nonuniform csps. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS (pp. 319–330).

    Google Scholar 

  • Bulatov, A. A., & Dalmau, V. (2006). A simple algorithm for mal’tsev constraints. SIAM Journal on Computing, 36, 16–27.

    Article  Google Scholar 

  • Bulatov, A. A., Grohe, M., Kolaitis, P. G., & Krokhin, A. A. (Eds.), (2009). The constraint satisfaction problem: Complexity and approximability. In Dagstuhl Seminar Proceedings (Vol. 09441)

    Google Scholar 

  • Bulatov, A. A., Jeavons, P., & Krokhin, A. A. (2005). Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34(3), 720–742.

    Article  Google Scholar 

  • Bulatov, A. A. Krokhin, A. A., & Larose, B. (2008). Dualities for constraint satisfaction problems. In Complexity of Constraints - An Overview of Current Research Themes (pp. 93–124).

    Google Scholar 

  • Cai, J.-Y., Fürer, M., & Immerman, N. (1992). An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4), 389–410.

    Article  Google Scholar 

  • Chandra, A., & Harel, D. (1982). Structure and complexity of relational queries. Journal of Computer and System Sciences, 25, 99–128.

    Article  Google Scholar 

  • Dalmau, V., Kolaitis, Ph. G., & Vardi, M. Y. (2002). Constraint satisfaction, bounded treewidth, and finite-variable logics. In International Conference on Principles and Practice of Constraint Programming (pp. 310–326). Springer.

    Google Scholar 

  • Dawar, A. (1993). Feasible computation through model theory. Ph.D thesis, University of Pennsylvania.

    Google Scholar 

  • Dawar, A., & Kreutzer, S. (2008). On Datalog vs. LFP. In International Colloquium on Automata, Languages, and Programming (ICALP) (pp. 160–171). Springer.

    Google Scholar 

  • Dawar, A., Lindell, S., & Weinstein, S. (1995). Infinitary logic and inductive definability over finite structures. Information and Computation, 119(2), 160–175.

    Article  Google Scholar 

  • Dawar, A., & Wang, P. (2015). A definability dichotomy for finite valued CSPs. In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015 (pp. 60–77).

    Google Scholar 

  • Ebbinghaus, H.-D., & Flum, J. (1999). Finite model theory (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Enderton, H. B. (1972). A mathematical introduction to logic. Cambridge: Academic.

    Google Scholar 

  • Evdokimov, S., & Ponomarenko, I. (1999). On highly closed cellular algebras and highly closed isomorphisms. Electronic Journal of Combinatorics, 6(1), Research paper 18, 31 pages.

    Google Scholar 

  • Fagin, R. (1974). Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp (Ed.), Complexity of Computation, SIAM-AMS Proceedings (Vol. 7, pp. 43–73).

    Google Scholar 

  • Feder, T., & Vardi, M. Y. (1998). Computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal of Computing, 28, 57–104.

    Article  Google Scholar 

  • Feder, T., & Vardi, M. Y. (2003). Homomorphism closed vs existential positive. In Proceedings of the 18th IEEE Symposium on Logic in Computer Science (pp. 311–320).

    Google Scholar 

  • Filotti, I. S., & Mayer, J. N. (1980). A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus (working paper). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC) (pp. 236–243).

    Google Scholar 

  • Furst, M. L., Hopcroft, J. E., & Luks, E. M. (1980). Polynomial-time algorithms for permutation groups. In 21st Annual Symposium on Foundations of Computer Science (FOCS) (pp. 36–41).

    Google Scholar 

  • Grohe, M., & Mariño, J. (1999). Definability and descriptive complexity on databases of bounded tree-width. In Proceedings of the 7th International Conference on Database Theory. LNCS (Vol. 1540, pp. 70–82). Springer.

    Google Scholar 

  • Grohe, M., & Marx, D. (2015). Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM Journal on Computing, 44, 114–159.

    Article  Google Scholar 

  • Grohe, M., & Otto, M. (2015). Pebble games and linear equations. The Journal of Symbolic Logic, 80, 797–844.

    Article  Google Scholar 

  • Grohe, M. (2017). Descriptive complexity, canonisation, and definable graph structure theory. Lecture notes in logic (Vol. 47). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gurevich, Y. (1988). Logic and the challenge of computer science. In E. Börger (Ed.), Current trends in theoretical computer science (pp. 1–57). Computer Science Press.

    Google Scholar 

  • Hella, L. (1996). Logical hierarchies in PTIME. Information and Computation, 129, 1–19.

    Article  Google Scholar 

  • Holm, B. (2010). Descriptive complexity of linear algebra. Ph.D thesis, University of Cambridge.

    Google Scholar 

  • Idziak, P. M., Markovic, P., McKenzie, R., Valeriote, M., & Willard, R. (2010). Tractability and learnability arising from algebras with few subpowers. SIAM Journal on Computing, 39, 3023–3037.

    Article  Google Scholar 

  • Immerman, N. (1986). Relational queries computable in polynomial time. Information and Control, 68, 86–104.

    Article  Google Scholar 

  • Immerman, N., & Lander, E. S. (1990). Describing graphs: A first-order approach to graph canonization. In A. Selman (Ed.), Complexity theory retrospective. Berlin: Springer.

    Google Scholar 

  • Kolaitis, P. G., & Vardi, M. Y. (1992). Infinitary logics and 0–1 laws. Information and Computation, 98(2), 258–294.

    Article  Google Scholar 

  • Kolaitis, P. G., & Vardi, M. Y. (1995). On the expressive power of Datalog: Tools and a case study. Journal of Computer and System Sciences, 51, 110–134.

    Article  Google Scholar 

  • Kolaitis, Ph. G., & Vardi, M. Y. (2008). A logical approach to constraint satisfaction. In Complexity of constraints - An overview of current research themes (pp. 125–155).

    Google Scholar 

  • Krokhin, A. A., & Zivný, S. (Eds.) (2017). The constraint satisfaction problem: Complexity and approximability. Dagstuhl Follow-Ups (Vol. 7). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

    Google Scholar 

  • van Leeuwen, J. (Ed.) (1990). Handbook of theoretical computer science. MIT Press.

    Google Scholar 

  • Libkin, L. (2004). Elements of finite model theory. Berlin: Springer.

    Book  Google Scholar 

  • Livchak, A. (1983). The relational model for process control. Automated Documentation and Mathematical Linguistics, 4, 27–29.

    Google Scholar 

  • Luks, E. M. (1982). Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences, 25, 42–65.

    Article  Google Scholar 

  • Lyndon, R. C. (1959). An interpolation theorem in the predicate calculus. Pacific Journal of Mathematics, 9, 129–42.

    Article  Google Scholar 

  • Otto, M. (1997). Bounded variable logics and counting—A study in finite models. Lecture notes in logic (Vol. 9). Berlin: Springer.

    Google Scholar 

  • Poizat, B. (1982). Deux ou trois choses que je sais de \({L}_n\). Journal of Symbolic Logic, 47(3), 641–658.

    Article  Google Scholar 

  • Ponomarenko, I. (1988). The isomorphism problem for classes of graphs that are invariant with respect to contraction (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 174, 147–177.

    Google Scholar 

  • Ramana, M. V., Scheinerman, E. R., & Ullman, D. (1994). Fractional isomorphism of graphs. Discrete Mathematics, 132, 247–265.

    Article  Google Scholar 

  • Rossman, B. (2008). Homomorphism preservation theorems. Journal of the ACM, 55.

    Google Scholar 

  • Tait, W. W. (1959). A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic Logic, 24, 15–16.

    Article  Google Scholar 

  • Tarski, A. (1954). Contributions to the theory of models I. II. Indagationes Mathematicae, 16, 572–588.

    Article  Google Scholar 

  • Vardi, M. Y. (1982). The complexity of relational query languages. In Proceedings of the 14th ACM Symposium on Theory of Computing (pp. 137–146).

    Google Scholar 

  • Weisfeiler, B., & Leman, A. (1976). On construction and identification of graphs. Lecture notes in mathematicsPrinceton: Citeseer.

    Google Scholar 

  • Zhuk, D. (2017). A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS (pp. 331–342).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Dawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dawar, A. (2023). Constraint Satisfaction, Graph Isomorphism, and the Pebbling Comonad. In: Palmigiano, A., Sadrzadeh, M. (eds) Samson Abramsky on Logic and Structure in Computer Science and Beyond. Outstanding Contributions to Logic, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-24117-8_18

Download citation

Publish with us

Policies and ethics