Skip to main content

Abstract

The biosensor is an analytical device that consists of two main segments; a physicochemical converter, a transducer, and a biological element, a bio-receptor, whose functions are performed by enzymes, proteins, nucleic acids, and microorganisms. As a result of the interaction of the bio-receptor with the analyte using a transducer, an electrical or optical signal is generated that is proportional to the analyte. This chapter considers the types of biosensors, their specifics, possible configuration, materials used, and manufacturing and operation features. A brief description of electrochemical, optical, and physical biosensors, as well as enzyme biosensors, aptasensors, protein sensors, immunosensors, cell-based biosensors, and biochips is given. It has been shown that the use of nanomaterials such as quantum dots, nanoparticles, and core-shell structures improves the efficiency of biosensors. The main areas of application of biosensors are considered. It is shown that biosensors can become alternative analytical tools with high efficiency, high sensitivity, and selectivity for applications in various fields such as medicine, agriculture, food quality control, environment monitoring, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd-Elsalam AK. Nanoplatforms for plant pathogenic fungi management. Fungal Genom Biol. 2013;2(2):1000e107.

    Google Scholar 

  2. Adlerberth J, Meng Q, Mecklenburg M, Tian Z, Zhou Y, Bülow L, Xie B. Thermometric analysis of blood metabolites in ICU patients. J Therm Anal Calorim. 2020;140:763–71.

    Article  Google Scholar 

  3. Akolpoglu MB, Bozuyuk U, Erkoc P, Kizilel S. Biosensing–drug delivery systems for in vivo applications. Adv Biosens Health Care Appl. 2019;2019:249–62.

    Article  Google Scholar 

  4. Alhadrami HA. Biosensors: classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2017;65(3):497–508.

    Article  Google Scholar 

  5. Altintas Z, Davis F, Scheller FW. Applications of quantum dots in biosensors and diagnostics. In: Altintas Z, editor. Biosensors and nanotechnology: applications in health care diagnostics. Wiley; 2017. p. 183–99.

    Chapter  Google Scholar 

  6. Alves RC, Barroso MF, González-García MB, Beatriz M, Oliveira PP, Matos CD. New trends in food allergens detection: toward biosensing strategies. Crit Rev Food Sci Nutr. 2016;56(14):2304–19.

    Article  Google Scholar 

  7. Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron. 2006;21(8):1405–23.

    Article  Google Scholar 

  8. Anand TP, Chellaram C, Murugaboopathi G, Parthasarathy V, Vinurajkumar S. Applications of biosensors in food industry. Biosci Biotechnol Res Asia. 2013;10(2):711–4.

    Article  Google Scholar 

  9. Anderson GP, King KD, Cao LK, Jacoby M, Ligler FS, Ezzell J. Quantifying serum antiplague antibody with a fiber-optic biosensor. Clin Diagn Lab Immunol. 1998;5(5):609–12.

    Article  Google Scholar 

  10. Anderson GP, Breslin KA, Ligler FS. Assay development for a portable fiberoptic biosensor. ASAIO J. 1996;42(6):942–6.

    Article  Google Scholar 

  11. Andryukov BG, Lyapun IN, Matosova EV, Somova LM. Biosensor technologies in medicine: from detection of biochemical markers to research into molecular targets (review). Sovrem Tekhnologii Med. 2021;12(6):70–83. (in Russian)

    Article  Google Scholar 

  12. Anikeeva PO, Madigan CF, Halpert JE, Bawendi MG, Bulovic V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys Rev B. 2008;78:085434.

    Article  ADS  Google Scholar 

  13. Arora K. Advances in nano based biosensors for food and agriculture. In: Gothandam KM, Ranjan S, Dasqupta N, Ramalingam C, Lichtfouse E, editors. Nanotechnology, food security and water treatment. Springer; 2018. p. 1–52.

    Google Scholar 

  14. Arora K, Chand S, Malhotra BD. Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta. 2006;568(1–2):259–74.

    Article  Google Scholar 

  15. Baek M, Baker D. Deep learning and protein structure modeling. Nat Methods. 2021;19:11–26.

    Google Scholar 

  16. Bamdad C. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA. Biophys J. 1998;75(4):1197–2003.

    Article  Google Scholar 

  17. Barreiros dos Santos M, Agusil JP, Prieto-Simón B, Sporer C, Teixeira V, Samitier J. Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron. 2013;45:174–80.

    Article  Google Scholar 

  18. Belluzo M, Ribone M, Lagier C. Assembling amperometric biosensors for clinical diagnostics. Sensors. 2008;8(3):1366–99.

    Article  ADS  Google Scholar 

  19. Bettazzi F, Marraza G, Minunii M. Biosensors and related bioanalytical tools. Compr Anal Chem. 2017;77:1–33.

    Article  Google Scholar 

  20. Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z. Fluorescence-based biosensor for monitoring of environmental pollutants: from concept to field application. Biosens Bioelectron. 2016;84:97–105.

    Article  Google Scholar 

  21. Bishnoi S, Sharma A, Singhal R, Goyal RN. Edge plane pyrolytic graphite as a sensing surface for the determination of fluvoxamine in urine samples of obsessive-compulsive disorder patients. Biosens Bioelectron. 2020;168:112489.

    Article  Google Scholar 

  22. Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.

    Article  Google Scholar 

  23. Bollella P, Gorton L. Enzyme based amperometric biosensors. Curr Opin Electrochem. 2018;10:157–73.

    Article  Google Scholar 

  24. Borisov SM, Wolfbeis OS. Optical biosensors. Chem Rev. 2008;108(2):423–61.

    Article  Google Scholar 

  25. Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Muñoz-Pascual F-X, Bratov A. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sensors Actuators B Chem. 2018;255:2988–95.

    Article  Google Scholar 

  26. Brosel-Oliu S, Galyamin D, Abramova N, Muñoz-Pascual F-X, Bratov A. Impedimetric label-free sensor for specific bacteria endotoxin detection by surface charge registration. Electrochim Acta. 2017;243:142–51.

    Article  Google Scholar 

  27. Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, et al. Fully integrated biochip platforms for advanced healthcare. Sensors. 2012;12:11013–60.

    Article  ADS  Google Scholar 

  28. Çevik E, Dervisevic M, Gavba AR, Yanik-Yildirim KC, Abasiyanik MF, Vardar-Schara G. Amperometric monooxygenase biosensor for the detection of aromatic hydrocarbons. Sens Lett. 2016;14(3):234–40.

    Article  Google Scholar 

  29. Chakraborty B, Ghosh S, Das N, RoyChaudhuri C. Liquid gated ZnO nanorod FET sensor for ultrasensitive detection of hepatitis B surface antigen with vertical electrode configuration. Biosens Bioelectron. 2018;122:58–67.

    Article  Google Scholar 

  30. Chatterjee K, Sarkar S, Jagajjanani RK, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci. 2014;209:8–39.

    Article  Google Scholar 

  31. Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42(12):5425–38.

    Article  Google Scholar 

  32. Chen L, Neethirajan S. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus A Hemagglutinin antigen. Sensors. 2015;15:8852–65.

    Article  ADS  Google Scholar 

  33. Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst. 2020;145:1605–28.

    Article  ADS  Google Scholar 

  34. Chin CD, Linder V, Sia SK. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip. 2007;7:41–57.

    Article  Google Scholar 

  35. Cho I, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24:6.

    Article  Google Scholar 

  36. Chuensirikulchai K, Laopajon W, Phunpae P, Apiratmateekul N, Surinkaew S, Tayapiwatana C, et al. Sandwich antibody-based biosensor system for identification of mycobacterium tuberculosis complex and nontuberculous mycobacteria. J Immunoassay Immunochem. 2019;40(6):590–604.

    Article  Google Scholar 

  37. Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102(29):29–45.

    ADS  Google Scholar 

  38. Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953;6(3):189–93.

    Article  Google Scholar 

  39. Cui S, Ling P, Zhu H, Keener H. Plant pest detection using an artificial nose system: a review. Sensors. 2018;18(2):378.

    Article  ADS  Google Scholar 

  40. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33:1141–61.

    Article  Google Scholar 

  41. Datta M, Mittal S, Goyal D. Potentiometric Zn2+ biosensor based on bacterial cells. Asian J Biotechnol. 2009;1:67–73.

    Article  Google Scholar 

  42. De Bastida G, Arregui FJ, Javier Goicoechea J, Matias IR. Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sensors J. 2006;6:1378–9.

    Article  ADS  Google Scholar 

  43. Deep A, Saraf M, Neha BSK, Sharma AL. Styrene Sulphonic acid doped polyaniline based immunosensor for highly sensitive impedimetric sensing of atrazine. Electrochim Acta. 2014;146:301–6.

    Article  Google Scholar 

  44. De Fátima Giarola J, Mano V, Pereira AC. Development and application of a voltammetric biosensor based on polypyrrole/uricase/graphene for uric acid determination. Electroanalysis. 2017;30(1):119–27.

    Article  Google Scholar 

  45. Deisingh A. Biosensors for microbial detection. Microbiologist. 2003;2:30–3.

    Google Scholar 

  46. Dervisevic M, Dervisevic E, Cevik E, Senel M. Novel electrochemical xanthine biosensor based on chitosan-polypyrrole-gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal. 2017;25(3):510–9.

    Article  Google Scholar 

  47. Dietrich JA, McKee AE, Keasling JD. High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem. 2010;79:563–90.

    Article  Google Scholar 

  48. Dinshaw IJ, Muniandy S, Teh SJ, Ibrahim F, Leo BF, Thong KL. Development of an aptasensor using reduced graphene oxide chitosan complex to detect salmonella. J Electroanal Chem. 2017;806:88–96.

    Article  Google Scholar 

  49. Dippel AB, Anderson WA, Evans RS, Deutsch S, Hammond MC. Chemiluminescent biosensors for detection of second messenger cyclic di-GMP. ACS Chem Biol. 2018;13:1872–9.

    Article  Google Scholar 

  50. Du X, Zhou J. Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci. 2018;118:444–8.

    Article  Google Scholar 

  51. Dudak FC, Boyaci IH. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J. 2009;4(7):1003–11.

    Article  Google Scholar 

  52. Durrieu C, Lagarde F, Jaffrezic-Renault N. Nanotechnology assets in biosensors design for environmental monitoring. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer; 2013. p. 189–229.

    Chapter  Google Scholar 

  53. Dziąbowska K, Czaczyk E, Nidzworski D. Application of electrochemical methods in biosensing technologies. In: Rinken T, Kivirand K, editors. Biosensing technologies for the detection of pathogens – a prospective way for rapid analysis. Intechopen; 2018. p. 151–71.

    Google Scholar 

  54. Dzyadevych S, Jaffrezic-Renault N. Conductometric biosensors. In: Schaudies RP, editor. Biological Identification. Elsevier; 2014. p. 153–93.

    Chapter  Google Scholar 

  55. Ebara M, editor. Biomaterials Nanoarchitectonics. Elsevier; 2016.

    Google Scholar 

  56. El-Said WA, Abdelshakour M, Choi J-H, Choi J-W. Application of conducting polymer nanostructures to electrochemical biosensors. Molecules. 2020;25(2):307.

    Article  Google Scholar 

  57. Emaminejad S, Javanmard M, Dutton RW, Davis RW. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry. Lab Chip. 2012;12:4499–507.

    Article  Google Scholar 

  58. Fang Y, Umasankar Y, Ramasamy RP. Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst. 2014;139(15):3804–10.

    Article  ADS  Google Scholar 

  59. Frasco MF, Chantiotakas N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors. 2009;9:7266–86.

    Article  ADS  Google Scholar 

  60. Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, et al. Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2 @MWCNTs nanocomposite as enzyme-mimetic labels. Biosens Bioelectron. 2018;102:189–95.

    Article  Google Scholar 

  61. Gardeniers JG, van den Berg A. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem. 2004;378:1700–3.

    Article  Google Scholar 

  62. Gayda G, Demkiv O, Stasyuk N, Serkiz R, Lootsik M, Errachid A, et al. Metallic nanoparticles obtained via “green” synthesis as a platform for biosensor construction. Appl Sci. 2019;9(4):720.

    Article  Google Scholar 

  63. Ghica M, Pauliukaite R, Fatibello-Filho O, Brett MAC. Application of functionalized carbon nanotubes immobilized into chitosan films in amperometric enzymes biosensors. Sensors Actuators B Chem. 2009;142:308–12.

    Article  Google Scholar 

  64. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2011;112(4):2373–433.

    Article  Google Scholar 

  65. Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, et al. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron. 2018;113:124–35.

    Article  Google Scholar 

  66. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - sensor principles and architectures. Sensors. 2008;8(3):1400–58.

    Article  ADS  Google Scholar 

  67. Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal Chem. 2020;128:115906.

    Article  Google Scholar 

  68. Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–53.

    Article  Google Scholar 

  69. Hnaiein M, Hassen WM, Abdelghani A. A conductometric immunosensor based on functionalized magnetite nanoparticles for E. coli detection. Electrochem Commun. 2008;10:1152–4.

    Article  Google Scholar 

  70. Hong S, Lee C. The current status and future outlook of quantum dot-based biosensors for plant virus detection. Plant Pathol J. 2018;34(2):85–92.

    Article  Google Scholar 

  71. Huang J, Zhong Y, Li W, Wang W, Li C, s, et al. Fluorescent and opt-electric recording bacterial identification device for ultrasensitive and specific detection of microbials. ACS Sens. 2021;6:443–9.

    Article  Google Scholar 

  72. Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem. 2019;7:724.

    Article  ADS  Google Scholar 

  73. Jiang H, Ju H. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem. 2007;79:6690–6.

    Article  Google Scholar 

  74. Jiang Y, Tian B. Inorganic semiconductor biointerfaces. Nat Rev Mater. 2018;3:473–90.

    Article  ADS  Google Scholar 

  75. Jiang YW, Li X, Liu B, Yi J, Fang Y, Shi F, et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat Biomed Eng. 2018;2:508–21.

    Article  Google Scholar 

  76. Jie G, Zhang J, Wang D, Cheng C, Chen H-Y, Zhu J-J. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem. 2008;80:4033–9.

    Article  Google Scholar 

  77. Jonkheijm P, Weinrich D, Schroeder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed. 2008;47:9618–47.

    Article  Google Scholar 

  78. Jyoung JY, Hong S, Lee W, Choi JW. Immunosensor for the detection of vibrio cholerae O1 using surface plasmon resonance. Biosens Bioelectron. 2006;21(12):2315–9.

    Article  Google Scholar 

  79. Karunakaran C, Bhargava K, Benjamin R, editors. Biosensors and bioelectronics. Netherlands: Elsevier; 2015.

    Google Scholar 

  80. Katz E, Willner B. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Edn. 2000;39:1180–218.

    Article  Google Scholar 

  81. Kavousi F, Goodarzi M, Ghanbari D, Hedayati K. Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. J Mol Struct. 2019;1183:324–30.

    Article  ADS  Google Scholar 

  82. Kavosia B, Navaee A, Salimi A. Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decoratedof AuNPs-PAMAM dendrimer. Luminescence. 2018;204:368–74.

    Article  ADS  Google Scholar 

  83. Khan T, Civas M, Cetinkaya O, Abbasi NA, Akan OB. Nanosensor networks for smart health care. In: Han B, Tomer VK, Nguyen TA, Singh PK, editors. Nanosensors for smart cities. Elsevier; 2020. p. 387–403.

    Chapter  Google Scholar 

  84. Klima JC, Doyle LA, Lee JD, Rappleye M, Gagnon LA, Lee MY, et al. Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. Nat Commun. 2021;12:856.

    Article  ADS  Google Scholar 

  85. Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017;55(8):2313–20.

    Article  Google Scholar 

  86. Kumar KS, Kumar VB, Paik P. Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanopart. 2014;2014:1–24.

    Google Scholar 

  87. Leca-Bouvier D, Blum LJ. Enzyme for biosensing applications. In: Zourob M, editor. Recognition receptors in biosensors. New York: Springer; 2010. p. 177–220.

    Chapter  Google Scholar 

  88. Lee AC, Lee Y, Lee D, Kwon S. Divide and conquer: a perspective on biochips for single-cell and rare-molecule analysis by next-generation sequencing. APL Bioeng. 2019;3:020901.

    Article  Google Scholar 

  89. Lepinay S, Staff A, Ianoul A, Albert J. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosens Bioelectron. 2014;52:337–44.

    Article  Google Scholar 

  90. Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nano. 2019;9:192.

    Google Scholar 

  91. Li Y, Wang H, Tang H. Chemo/bionanosensors for medical applications. In: Han B, Tomer VK, Nguyen TA, Singh PK, editors. Nanosensors for smart cities. Elsevier; 2020a. p. 483–500.

    Chapter  Google Scholar 

  92. Li Z, Liu Y, Chen X, Cao H, Shen H, Mou L, et al. Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio. Biosens Bioelectron. 2020b;166:112444.

    Article  Google Scholar 

  93. Luo M, Chen X, Zhou G, Xiang X, Chen L, Jia X, He Z. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem Commun. 2012;48:1126–8.

    Article  Google Scholar 

  94. Luong JHT, Narayan T, Solanki S, Malhotra BD. Recent advances of conducting polymers and their composites for electrochemical biosensing applications. J Funct Biomater. 2020;11(4):71.

    Article  Google Scholar 

  95. Lyagin IV, Efremenko EN, Varfolomeev SD. Enzymatic biosensors for determination of pesticides. Russ Chem Rev. 2017;86(4):339.

    Article  ADS  Google Scholar 

  96. Ma S, Li X, Lee Y-K, Zhang A. Direct label-free protein detection in high ionic strength solution and human plasma using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Biosens Bioelectron. 2018a;117:276–82.

    Article  Google Scholar 

  97. Ma F, Li C, Zhang C. Development of quantum dot-based biosensors: principles and applications. J Mater Chem B. 2018b;6:6173–90.

    Article  Google Scholar 

  98. Mallakpour S, Behranvand V. Polymeric nanoparticles: recent development in synthesis and application. eXPRESS Polym Lett. 2016;10(11):895–913.

    Article  Google Scholar 

  99. Makiola A, Dickie IA, Holdaway RJ, Wood JR, Orwin KH, Glare TR. Land use is a determinant of plant pathogen alpha- but not beta-diversity. Mol Ecol. 2019;28(16):3786–98.

    Article  Google Scholar 

  100. Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip. 2010;10:418–31.

    Article  Google Scholar 

  101. Manoharan H, Kalita P, Gupta S, Sai VVR. Plasmonic biosensors for bacterial endotoxin detection on biomimetic C-18 supported fiber optic probes. Biosens Bioelectron. 2019;129:79–86.

    Article  Google Scholar 

  102. Marchenko SV, Kucherenko IS, Hereshko AN, Panasiuk IV, Soldatkin OO, El’skaya A V., Soldatkin A.P. Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate. Sensors Actuators B Chem. 2015;207:981–6.

    Article  Google Scholar 

  103. Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors. 2014;4(3):301–17.

    Article  Google Scholar 

  104. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–31.

    Article  Google Scholar 

  105. Mehrotra P. Biosensors and their applications – A review. J Oral Biol Craniofac Res. 2016;6(2):153–9.

    Article  Google Scholar 

  106. Mendes RK, Laschi S, Stach-Machado DR, Kubota LT, Marrazza G. A disposable voltammetric immunosensor based on magnetic beads for early diagnosis of soybean rust. Sensors Actuators B Chem. 2012;166-167:135–40.

    Article  Google Scholar 

  107. Mercante LA, Scagion VP, Migliorini FL, Mattoso LHC, Correa DS. Electrospinning-based (bio)sensors for food and agricultural applications: a review. TrAC Trends Anal Chem. 2017;91:91–103.

    Article  Google Scholar 

  108. Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci. 2004;5:782–92.

    Article  Google Scholar 

  109. Moharana M, Pattanayak SK. Biosensors: a better biomarker for diseases diagnosis. In: Chaki J, Dey N, De D, editors. Smart biosensors in medical care. Elsevier; 2020. p. 49–64.

    Chapter  Google Scholar 

  110. Moran KLM, Fitzgerald J, McPartlin DA, Loftus JH, O’Kennedy R. Biosensor-based technologies for the detection of pathogens and toxins. Compr Anal Chem. 2016;93–120. https://doi.org/10.1016/bs.coac.2016.04.002

  111. Mosbach K, Danielsson B. An enzyme thermistor. Biochim Biophys Acta. 1974;364:140–5.

    Article  Google Scholar 

  112. Moyo M, Okonkwo JO, Agyei NM. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb Technol. 2014;56:28–34.

    Article  Google Scholar 

  113. Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, Leo BF. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry. 2019;127:136–44.

    Article  Google Scholar 

  114. Nabaei V, Chandrawati R, Heidari H. Magnetic biosensors: modelling and simulation. Biosens Bioelectron. 2018;103:69–86.

    Article  Google Scholar 

  115. Nasrin F, Chowdhury AD, Takemura K, Lee J, Adegoke O, Deo VK, Abe F, Suzuki T, Park EY. Single-step detection of norovirus tuning localized surface Plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens Bioelectron. 2018;122:16–24.

    Article  Google Scholar 

  116. Nikoleli G-P, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel biosensors for the rapid detection of toxicants in foods. Adv Food Nutr Res. 2018;84:57–102.

    Article  Google Scholar 

  117. Nomoev AV, Bardakhanov SP, Schreiber M, Bazarova DG, Romanov NA, Baldanov BB, et al. Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J Nanotechnol. 2015;6:874–80.

    Article  Google Scholar 

  118. Nquyet NT, Yen LTH, Doan VY, Hoang NL, Van Thu V, Lan H, et al. A label-free and highly sensitive DNA biosensor based on the core-shell structured CeO2-NR@Ppy nanocomposite for Salmonella detection. Mater Sci Eng C. 2019;96:790–7.

    Article  Google Scholar 

  119. Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors (Basel). 2013;13(5):5777–95.

    Article  ADS  Google Scholar 

  120. Parnianchi F, Nazari M, Maleki J, Mohebi M. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int Nano Lett. 2018;8:229–39.

    Article  Google Scholar 

  121. Pilo M, Farre R, Lachowicz JI, Masolo E, Panzanelli A, Sanna G, et al. Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (Poly)Thiophene films. J Anal Methods Chem. 2018;2018:1849439.

    Article  Google Scholar 

  122. Plekhanova YV, Reshetilov AN. Microbial biosensors for the determitation of pesticides. J Anal Chem. 2019;74(12):883–901. (in Russian)

    Article  Google Scholar 

  123. Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 2018;11(3):448.

    Article  ADS  Google Scholar 

  124. Pohanka M, Drobik O, Krenkova Z, Zdarova-Karasova J, Pikula J, Cabal J, Kuca K. Voltammetric biosensor based on acetylcholinesterase and different immobilization protocols: a simple tool for toxic organophosphate assay. Anal Lett. 2011;44(7):1254–64.

    Article  Google Scholar 

  125. Pohanka M, Skládal P. Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis. Folia Microbiol (Praha). 2007;52(4):325–30.

    Article  Google Scholar 

  126. Quijano-Rubio A, Yeh H-W, Park J, Lee H, Langan RA, Boyken SE, et al. De novo design of modular and tunable protein biosensors. Nature. 2021;591:482–7.

    Article  ADS  Google Scholar 

  127. Rabiu GA, Kumar V. Microorgansim based biosensors to detect soil pollutants. Plant Arch. 2020;20(Suppl 2):2509–16.

    Google Scholar 

  128. Rama EC, González-García MB, Costa-García A. Competitive electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated screen-printed carbon electrodes. Sensors Actuators B Chem. 2014;201:567–71.

    Article  Google Scholar 

  129. Renella G, Giagnoni L. Light dazzles from the black box: whole-cell biosensors are ready to inform on fundamental soil biological processes. Chem Biol Technol Agric. 2016;3:8.

    Article  Google Scholar 

  130. Rodriguezmozaz-Mozaz S, Alda M, Marco M, Barcelo D. Biosensors for environmental monitoring: a global perspective. Talanta. 2005;65(2):291–7.

    Article  Google Scholar 

  131. Ronkainen N, Okon S. Nanomaterial-based electrochemical immunosensors for clinically significant biomarkers. Materials (Basel). 2014;7(6):4669–709.

    Article  ADS  Google Scholar 

  132. Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8:1775–89.

    Article  Google Scholar 

  133. Sadasivuni KK, Ponnamma D, Kim J, Cabibihan J-J, AlMaadeed MA, editors. Biopolymer composites in electronics. Elsevier; 2017.

    Google Scholar 

  134. Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Hasanzadeh F. Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol. 2012;34(4):507–15.

    Article  Google Scholar 

  135. Salek-Maghsoudi A, Vakhshiteh F, Torabi R. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron. 2018;99:122–35.

    Article  Google Scholar 

  136. Saylan Y, Erdem Ö, Ünal S, Denizli A. An alternative medical diagnosis method: biosensors for virus detection. Biosensors. 2019;9(2):65.

    Article  Google Scholar 

  137. Schenkmayerová A, Bučko M, Gemeiner P, Katrlík J. Microbial monooxygenase amperometric biosensor for monitoring of Baeyer–Villiger biotransformation. Biosens Bioelectron. 2013;50:235–8.

    Article  Google Scholar 

  138. Senel M, Alachkar A. Lab-in-a-pencil graphite: a 3D-printed microfluidic sensing platform for real-time measurement of antipsychotic clozapine level. Lab Chip. 2021;21:405–11.

    Article  Google Scholar 

  139. Singh P, Yadava RDS. Nanosensors for health care. In: Han B, Tomer VK, Kumar P, editors. Nanosensors for smart cities. Elsevier; 2020. p. 433–50.

    Chapter  Google Scholar 

  140. Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation. Front Genet. 2018;9:616.

    Article  Google Scholar 

  141. Singh S, Kaushal A, Khare S. DNA chip based sensor for amperometric detection of infectious pathogens. Int J Biol Macromol. 2017;103:355–9.

    Article  Google Scholar 

  142. Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem. 2014;197:385–404.

    Article  Google Scholar 

  143. Shang Z, Xu Y, Gu Y, Wang Y, Wei D, Zhan L. A rapid detection of pesticide residue based on piezoelectric biosensor. Procedia Eng. 2011;15:4480–5.

    Article  Google Scholar 

  144. Shang L, Zhang L, Dong S. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst. 2009;134:107–13.

    Article  ADS  Google Scholar 

  145. Sheng L, Lu Y, Deng S, Liao X, Zhang K, Ding T, et al. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun (Camb). 2019;55(68):10096–9.

    Article  Google Scholar 

  146. Sin ML, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. 2014;14(2):225–44.

    Article  Google Scholar 

  147. Sleno L, Emili A. Proteomic methods for drug target discovery. Curr Opin Chem Biol. 2008;12:46–54.

    Article  Google Scholar 

  148. Song L, Mao K, Zhou X, Hu J. A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta. 2016;146:285–90.

    Article  Google Scholar 

  149. Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26(5):1788–99.

    Article  Google Scholar 

  150. Sutarlie L, Ow SY, Su X. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins. Biotechnol J. 2016;12(4):1–25.

    Google Scholar 

  151. Tang W, Yu J, Wang Z, Jeerapan I, Yin L, Zhang F, He P. Label-free potentiometric aptasensing platform for the detection of Pb2þ based on guanine quadruplex structure. Anal Chim Acta. 2019;1078:53–9.

    Article  Google Scholar 

  152. Teles FRR, Fonseca LP. Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C. 2008;28(8):1530–43.

    Article  Google Scholar 

  153. Tian BZ, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science. 2010;329:830–4.

    Article  ADS  Google Scholar 

  154. Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Anal Lett. 2001;34:635–59.

    Article  Google Scholar 

  155. Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem. 1999;71:2333–48.

    Article  Google Scholar 

  156. Tombelli S. Piezoelectric biosensors for medical applications. In: Higson S, editor. Biosensors for medical applications. Elsevier; 2012. p. 41–64.

    Chapter  Google Scholar 

  157. Wilfried GJ, Van Sark HM, Frederix PLTM, Bol AA, Gerritsen HC, Meijerink A. Bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem. 2002;3:871–9.

    Article  Google Scholar 

  158. Velychko TP, Soldatkin ОО, Melnyk VG, Marchenko SV, Kirdeciler SK, Akata B, Dzyadevych SV. A novel conductometric urea biosensor with improved analytical characteristic based on recombinant urease adsorbed on nanoparticle of silicalite. Nanoscale Res Lett. 2016;11(1):106.

    Article  ADS  Google Scholar 

  159. Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48(1):11.

    Article  Google Scholar 

  160. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol. 2016;4:11.

    Article  Google Scholar 

  161. Urmann K, Reich P, Walter JG, Beckmann D, Segal E, Scheper T. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures. J Biotechnol. 2017;257:171–7.

    Article  Google Scholar 

  162. Utkin DV, Ossina NA, Kouklev VE, Erokhin PS, Scherbakova SA, Kutyrev VV. Biosensors: current state and prospects of applying in laboratory diagnostics of particularly dangerous infectious diseases. Problems of particularly dangerous infections. 2009;102:11–4. (in Russian).

    Google Scholar 

  163. Wang X, Cheng M, Yang Q, Wei H, Xia A, Wang L, et al. A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress. Sci Total Environ. 2019a;697:134097.

    Article  ADS  Google Scholar 

  164. Wang Z, Yao X, Wang R, Ji Y, Yue T, Sun J, Li T, Wang J, Zhang D. Label-free strip sensor based on surface positively charged nitrogen-rich carbon nanoparticles for rapid detection of Salmonella enteritidis. Biosens Bioelectron. 2019b;132:360–7.

    Article  Google Scholar 

  165. Wang Z, Zhang Y, Zhang B, Lu X. Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of Serotonin. Talanta. 2018;190:1–8.

    Article  Google Scholar 

  166. Wang Y, Li X, Cao W, Li Y, Li H, Du B, Wei Q. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded toluidine blue/gold nanoparticles decorated KIT-6/carboxymethyl chitosan/ionic liquids as signal labels. Biosens Bioelectron. 2014;61:618–24.

    Article  Google Scholar 

  167. Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta. 2012;177:245–70.

    Article  Google Scholar 

  168. Wang DB, Bi LJ, Zhang ZP, Chen YY, Yang RF, Wei HP, et al. Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst. 2009;134(4):738–42.

    Article  ADS  Google Scholar 

  169. Wang S, Yumei TY, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitotsan nanocomposites. Biosens Biolectron. 2008;23:1781–7.

    Article  Google Scholar 

  170. Wang LY, Wang L, Gao F, Yu ZY, Wu ZM. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acid. Analyst. 2002;127:977–80.

    Article  ADS  Google Scholar 

  171. Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H. Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed. 2009;48:7744–51.

    Article  Google Scholar 

  172. Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron. 2016;85:649–56.

    Article  Google Scholar 

  173. Wu K, Saha R, Su D, Krishna VD, Liu J, Cheeran MC-J, Wang J-P. Magnetic nanosensor-based virus and pathogen detection strategies before and during COVID-19. ACS Appl Nano Mater. 2020;3(10):9560–80.

    Article  Google Scholar 

  174. Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol. 2007;73(6):1251–8.

    Article  Google Scholar 

  175. Yamanaka K, Vestergaard MC, Tamiya E. Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors. 2016;16(10):1761.

    Article  ADS  Google Scholar 

  176. Yang R, Liu S, Wu Z, Tan Y, Sun S. Core-shell assay based aptasensor for sensitive and selective thrombin detection using dark-field microscopy. Talanta. 2018;182:348–53.

    Article  Google Scholar 

  177. Yoon JY. Introduction. In: Yoon JY, editor. Introduction to biosensors. Cham: Springer; 2016.

    Chapter  Google Scholar 

  178. Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron. 2018;106:193–203.

    Article  Google Scholar 

  179. Zarei SS, Soleimanian-Zad S, Ensafi AA. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Mikrochim Acta. 2018;185(12):538.

    Article  Google Scholar 

  180. Zhang S, Ma L, Ma K, Xu B, Liu L, Tian W. Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide. ACS Omega. 2018;3(10):12886–92.

    Article  Google Scholar 

  181. Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 2014;87(1):230–49.

    Article  Google Scholar 

  182. Zehani N, Kherrat R, Dzyadevych SV, Jaffrezic-Renault N. A microconductometric biosensor based on lipase extracted from Candida rugose for direct and rapid detection of organophosphate pesticides. Int J Environ Anal Chem. 2015;95(5):466–79.

    Article  Google Scholar 

Download references

Acknowledgments

V.K. sincerely thanks everyone who contributed to the creation of this chapter. R.G.A. and P.G. are also thankful to Assistant Prof. Vineet Kumar for the tirelessness guidance and encouragement. G.K. is grateful to the State Program of the Republic of Moldova, project 20.80009.5007.02, for supporting his research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korotcenkov, G., Ahmad, R.G., Guleria, P., Kumar, V. (2023). Introduction to Biosensing. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_17

Download citation

Publish with us

Policies and ethics