Skip to main content

Deep Computational Model for the Inference of Ventricular Activation Properties

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers (STACOM 2022)

Abstract

Patient-specific cardiac computational models are essential for the efficient realization of precision medicine and in-silico clinical trials using digital twins. Cardiac digital twins can provide non-invasive characterizations of cardiac functions for individual patients, and therefore are promising for the patient-specific diagnosis and therapy stratification. However, current workflows for both the anatomical and functional twinning phases, referring to the inference of model anatomy and parameter from clinical data, are not sufficiently efficient, robust, and accurate. In this work, we propose a deep learning-based patient-specific computational model, which can fuse both anatomical and electrophysiological information for the inference of ventricular activation properties, i.e., conduction velocities and root nodes. The activation properties can provide a quantitative assessment of cardiac electrophysiological function for the guidance of interventional procedures. We employ the Eikonal model to generate simulated electrocardiograms (ECGs) with ground truth properties to train the inference model, where patient-specific information has also been considered. For evaluation, we test the model on the simulated data and obtain generally promising results with fast computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacoyannis, T., Ly, B., Cedilnik, N., Cochet, H., Sermesant, M.: Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization. EP Europace 23(Supplement_1), i55–i62 (2021)

    Google Scholar 

  2. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 1–12 (2018)

    Article  Google Scholar 

  3. Banerjee, A., et al.: A completely automated pipeline for 3D reconstruction of human heart from 2D cine magnetic resonance slices. Phil. Trans. R. Soc. A 379(2212), 20200257 (2021)

    Article  Google Scholar 

  4. Banerjee, A., Zacur, E., Choudhury, R.P., Grau, V.: Optimised misalignment correction from cine MR slices using statistical shape model. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 201–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_16

    Chapter  Google Scholar 

  5. Bayly, P.V., KenKnight, B.H., Rogers, J.M., Hillsley, R.E., Ideker, R.E., Smith, W.M.: Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans. Biomed. Eng. 45(5), 563–571 (1998)

    Article  Google Scholar 

  6. Beetz, M., Banerjee, A., Grau, V.: Generating subpopulation-specific biventricular anatomy models using conditional point cloud variational autoencoders. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 75–83. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_9

    Chapter  Google Scholar 

  7. Beetz, M., Banerjee, A., Grau, V.: Multi-domain variational autoencoders for combined modeling of MRI-based biventricular anatomy and ECG-based cardiac electrophysiology. Front. Physiol. 991 (2022)

    Google Scholar 

  8. Beetz, M., Banerjee, A., Sang, Y., Grau, V.: Combined generation of electrocardiogram and cardiac anatomy models using multi-modal variational autoencoders. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE (2022)

    Google Scholar 

  9. Bycroft, C., et al.: The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018)

    Article  Google Scholar 

  10. Caldwell, B.J., Trew, M.L., Sands, G.B., Hooks, D.A., LeGrice, I.J., Smaill, B.H.: Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circul. Arrhythmia Electrophysiol. 2(4), 433–440 (2009)

    Article  Google Scholar 

  11. Camps, J., et al.: Inference of ventricular activation properties from non-invasive electrocardiography. Med. Image Anal. 73, 102143 (2021)

    Google Scholar 

  12. Cantwell, C.D., Roney, C.H., Ng, F.S., Siggers, J.H., Sherwin, S.J., Peters, N.S.: Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Comput. Biol. Med. 65, 229–242 (2015)

    Article  Google Scholar 

  13. Cardone-Noott, L., Bueno-Orovio, A., Mincholé, A., Zemzemi, N., Rodriguez, B.: Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions. EP Europace 18(suppl_4), iv4–iv15 (2016)

    Google Scholar 

  14. Chinchapatnam, P., et al.: Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy. IEEE Trans. Med. Imaging 27(11), 1631–1642 (2008)

    Article  Google Scholar 

  15. Durrer, D., Van Dam, R.T., Freud, G., Janse, M., Meijler, F., Arzbaecher, R.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970)

    Article  Google Scholar 

  16. Engwirda, D.: Conforming restricted Delaunay mesh generation for piecewise smooth complexes. Proc. Eng. 163, 84–96 (2016)

    Article  Google Scholar 

  17. Fraley, M., Birchem, J., Senkottaiyan, N., Alpert, M.: Obesity and the electrocardiogram. Obes. Rev. 6(4), 275–281 (2005)

    Article  Google Scholar 

  18. Giffard-Roisin, S., et al.: Transfer learning from simulations on a reference anatomy for ECGI in personalized cardiac resynchronization therapy. IEEE Trans. Biomed. Eng. 66(2), 343–353 (2018)

    Article  Google Scholar 

  19. Gillette, K., et al.: Automated framework for the inclusion of a His-Purkinje system in cardiac digital twins of ventricular electrophysiology. Ann. Biomed. Eng. 49(12), 3143–3153 (2021)

    Article  Google Scholar 

  20. Good, W.W., et al.: Estimation and validation of cardiac conduction velocity and wavefront reconstruction using epicardial and volumetric data. IEEE Trans. Biomed. Eng. 68(11), 3290–3300 (2021)

    Article  Google Scholar 

  21. Grandits, T., Effland, A., Pock, T., Krause, R., Plank, G., Pezzuto, S.: GEASI: Geodesic-based earliest activation sites identification in cardiac models. Int. J. Numer. Methods Biomed. Eng. 37(8), e3505 (2021)

    Article  Google Scholar 

  22. Grandits, T., et al.: An inverse Eikonal method for identifying ventricular activation sequences from epicardial activation maps. J. Comput. Phys. 419, 109700 (2020)

    Google Scholar 

  23. Han, B., Trew, M.L., Zgierski-Johnston, C.M.: Cardiac conduction velocity, remodeling and arrhythmogenesis. Cells 10(11), 2923 (2021)

    Article  Google Scholar 

  24. Kaptoge, S., et al.: World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob. Health 7(10), e1332–e1345 (2019)

    Article  Google Scholar 

  25. Martinez-Navarro, H., Zhou, X., Bueno-Orovio, A., Rodriguez, B.: Electrophysiological and anatomical factors determine arrhythmic risk in acute myocardial ischaemia and its modulation by sodium current availability. Interface Focus 11(1), 20190124 (2021)

    Article  Google Scholar 

  26. Meister, F., et al.: Graph convolutional regression of cardiac depolarization from sparse endocardial maps. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 23–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_3

    Chapter  Google Scholar 

  27. Mincholé, A., Zacur, E., Ariga, R., Grau, V., Rodriguez, B.: MRI-based computational torso/biventricular multiscale models to investigate the impact of anatomical variability on the ECG QRS complex. Front. Physiol. 1103 (2019)

    Google Scholar 

  28. Niederer, S.A., Lumens, J., Trayanova, N.A.: Computational models in cardiology. Nat. Rev. Cardiol. 16(2), 100–111 (2019)

    Article  Google Scholar 

  29. Park, K.M., Kim, Y.H., Marchlinski, F.E.: Using the surface electrocardiogram to localize the origin of idiopathic ventricular tachycardia. Pacing Clin. Electrophysiol. 35(12), 1516–1527 (2012)

    Article  Google Scholar 

  30. Pashaei, A., Romero, D., Sebastian, R., Camara, O., Frangi, A.F.: Fast multiscale modeling of cardiac electrophysiology including Purkinje system. IEEE Trans. Biomed. Eng. 58(10), 2956–2960 (2011)

    Article  Google Scholar 

  31. Pezzuto, S., et al.: Reconstruction of three-dimensional biventricular activation based on the 12-lead electrocardiogram via patient-specific modelling. EP Europace 23(4), 640–647 (2021)

    Article  Google Scholar 

  32. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. (TOMS) 41(2), 1–36 (2015)

    Article  MATH  Google Scholar 

  33. Taneja, T., Windhagen Mahnert, B., Passman, R., Goldberger, J., Kadish, A.: Effects of sex and age on electrocardiographic and cardiac electrophysiological properties in adults. Pacing Clin. Electrophysiol. 24(1), 16–21 (2001)

    Article  Google Scholar 

  34. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision, pp. 728–737. IEEE (2018)

    Google Scholar 

Download references

Acknowledgement

This research has been conducted using the UK Biobank Resource under Application Number ‘40161’. The authors express no conflict of interest. This work was funded by the CompBioMed 2 Centre of Excellence in Computational Biomedicine (European Commission Horizon 2020 research and innovation programme, grant agreement No. 823712). L. Li was partially supported by the SJTU 2021 Outstanding Doctoral Graduate Development Scholarship. A. Banerjee is a Royal Society University Research Fellow and is supported by the Royal Society Grant No. URF. The work of A. Banerjee and V. Grau was supported by the British Heart Foundation (BHF) Project under Grant HSR01230. The work of M. Beetz was supported by the Stiftung der Deutschen Wirtschaft (Foundation of German Business).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Camps, J., Banerjee, A., Beetz, M., Rodriguez, B., Grau, V. (2022). Deep Computational Model for the Inference of Ventricular Activation Properties. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics