Skip to main content

State Machine Replication Under Changing Network Conditions

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Abstract

Protocols for state machine replication (SMR) are typically designed for synchronous or asynchronous networks, with a lower corruption threshold in the latter case. Recent network-agnostic protocols are secure when run in either a synchronous or an asynchronous network. We propose two new constructions of network-agnostic SMR protocols that improve on existing protocols in terms of either the adversarial model or communication complexity:

  1. 1.

    an adaptively secure protocol with optimal corruption thresholds and quadratic amortized communication complexity per transaction;

  2. 2.

    a statically secure protocol with near-optimal corruption thresholds and linear amortized communication complexity per transaction.

We further explore SMR protocols run in a network that may change between synchronous and asynchronous arbitrarily often; parties can be uncorrupted (as in the proactive model), and the protocol should remain secure as long as the appropriate corruption thresholds are maintained. We show that purely asynchronous proactive secret sharing is impossible without some form of synchronization between the parties, ruling out a natural approach to proactively secure network-agnostic SMR protocols. Motivated by this negative result, we consider a model where the adversary is limited in the total number of parties it can corrupt over the duration of the protocol and show, in this setting, that our SMR protocols remain secure even under arbitrarily changing network conditions.

A. B. Alexandru, E. Blum and J. Katz—Work supported in part by NSF award #1837517.

J. Loss—Part of this work was done while the author was a postdoctoral researcher at the University of Maryland and at the Carnegie Mellon University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following [29], we distinguish between \(\textsf{SMR}\) and atomic broadcast in that the former explicitly requires an externally verifiable proof of output validity.

References

  1. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited. In: Robinson, P., Ellen, F. (eds.) 38th ACM PODC, pp. 317–326. ACM, July 2019

    Google Scholar 

  2. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine agreement with expected O(1) rounds, expected \(O(n^2)\) communication, and optimal resilience. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 320–334. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_20

    Chapter  MATH  Google Scholar 

  3. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: simple and practical synchronous state machine replication. In: 2020 IEEE Symposium on Security and Privacy, pp. 106–118. IEEE Computer Society Press, May 2020

    Google Scholar 

  4. Alexandru, A.B., Blum, E., Katz, J., Loss, J.: State machine replication under changing network conditions. Cryptology ePrint Archive, Report 2022/698 (2022). https://eprint.iacr.org/2022/698

  5. Appan, A., Chandramouli, A., Choudhury, A.: Perfectly-secure synchronous MPC with asynchronous fallback guarantees. Cryptology ePrint Archive, Report 2022/109 (2022). https://eprint.iacr.org/2022/109

  6. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_10

    Chapter  Google Scholar 

  7. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 131–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_6

    Chapter  Google Scholar 

  8. Blum, E., Katz, J., Loss, J.: Tardigrade: an atomic broadcast protocol for arbitrary network conditions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 547–572. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_19

    Chapter  Google Scholar 

  9. Blum, E., Liu-Zhang, C.-D., Loss, J.: Always have a backup plan: fully secure synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 707–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_25

    Chapter  Google Scholar 

  10. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable secret sharing and proactive cryptosystems. In: Atluri, V. (ed.) ACM CCS 2002, pp. 88–97. ACM Press, November 2002

    Google Scholar 

  11. Cachin, C., Poritz, J.A.: Secure intrusion-tolerant replication on the internet. In: Proceedings International Conference on Dependable Systems and Networks, pp. 167–176. IEEE (2002)

    Google Scholar 

  12. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–116. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_7

    Chapter  Google Scholar 

  13. Castro, M., Liskov, B.: Proactive recovery in a Byzantine-Fault-Tolerant system. In: 4th Symposium on Operating Systems Design and Implementation (2000)

    Google Scholar 

  14. Das, S., Xiang, Z., Ren, L.: Balanced quadratic reliable broadcast and improved asynchronous verifiable information dispersal. Cryptology ePrint Archive, Report 2022/052 (2022). https://eprint.iacr.org/2022/052

  15. Duan, S., Reiter, M.K., Zhang, H.: BEAT: asynchronous BFT made practical. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 2028–2041. ACM Press, October 2018

    Google Scholar 

  16. Frankel, Y., MacKenzie, P., Yung, M.: Adaptively-secure optimal-resilience proactive RSA. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 180–194. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_15

    Chapter  Google Scholar 

  17. Ghinea, D., Liu-Zhang, C.-D., Wattenhofer, R.: Optimal synchronous approximate agreement with asynchronous fallback. Cryptology ePrint Archive, Report 2022/354 (2022). https://eprint.iacr.org/2022/354

  18. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, New York, NY, USA, pp. 51–68. ACM (2017)

    Google Scholar 

  19. Gordon, S.D., Katz, J., Kumaresan, R., Yerukhimovich, A.: Authenticated broadcast with a partially compromised public-key infrastructure. Inf. Comput. 234, 17–25 (2014)

    Article  MATH  Google Scholar 

  20. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive, Report 2021/339 (2021). https://eprint.iacr.org/2021/339

  21. Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: faster asynchronous BFT protocols. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 803–818. ACM Press, November 2020

    Google Scholar 

  22. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_27

    Chapter  Google Scholar 

  23. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is DAG. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pp. 165–175 (2021)

    Google Scholar 

  24. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 204–215. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_17

    Chapter  Google Scholar 

  25. Liu, C., Duan, S., Zhang, H.: EPIC: efficient asynchronous BFT with adaptive security. In: International Conference on Dependable Systems and Networks (DSN), pp. 437–451. IEEE (2020)

    Google Scholar 

  26. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-MVBA: optimal multi-valued validated asynchronous byzantine agreement, revisited. In: Emek, Y., Cachin, C. (eds.) 39th ACM PODC, pp. 129–138. ACM, August 2020

    Google Scholar 

  27. Maram, S.K.D., et al.: CHURP: dynamic-committee proactive secret sharing. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2369–2386. ACM Press, November 2019

    Google Scholar 

  28. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 31–42. ACM Press, October 2016

    Google Scholar 

  29. Momose, A., Ren, L.: Multi-threshold byzantine fault tolerance. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 1686–1699. ACM Press, November 2021

    Google Scholar 

  30. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols for byzantine broadcast and agreement. In: 34th International Symposium on Distributed Computing. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  31. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended abstract). In: Logrippo, L. (ed.) 10th ACM PODC, pp. 51–59. ACM, August 1991

    Google Scholar 

  32. Rambaud, M., Urban, A.: Asynchronous dynamic proactive secret sharing under honest majority: refreshing without a consistent view on shares. Cryptology ePrint Archive, Report 2022/619 (2022). https://eprint.iacr.org/2022/619

  33. Schultz, D.A., Liskov, B., Liskov, M.: Mobile proactive secret sharing. In: Proceedings of the 27th ACM Symposium on Principles of Distributed Computing, p. 458 (2008)

    Google Scholar 

  34. Shi, E.: Foundations of distributed consensus and blockchains. Book manuscript (2020)

    Google Scholar 

  35. Vassantlal, R., Alchieri, E., Ferreira, B., Bessani, A.: Cobra: dynamic proactive secret sharing for confidential BFT services. In: Symposium on Security and Privacy (SP), pp. 1528–1528. IEEE Computer Society (2022)

    Google Scholar 

  36. Yurek, T., Xiang, Z., Xia, Y., Miller, A.: Long live the honey badger: robust asynchronous DPSS and its applications. Cryptology ePrint Archive, Report 2022/971 (2022). https://eprint.iacr.org/2022/971

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreea B. Alexandru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexandru, A.B., Blum, E., Katz, J., Loss, J. (2022). State Machine Replication Under Changing Network Conditions. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22963-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22962-6

  • Online ISBN: 978-3-031-22963-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics