Skip to main content

An Insight into Platelets at Older Age: Cellular and Clinical Perspectives

  • Chapter
  • First Online:
Biochemistry and Cell Biology of Ageing: Part III Biomedical Science

Part of the book series: Subcellular Biochemistry ((SCBI,volume 102))

Abstract

Higher access to medical care, advanced diagnostic tools, and overall public health improvements have favored increased humans lifespan. With a growing proportion of older adults, the associated costs to care for ageing-associated conditions will continue to grow. This chapter highlights recent cellular and clinical evidence of platelets at an older age, from the hyperreactive phenotype associated with thrombosis to the well-known hallmarks of ageing identifiable in platelets and their potential functional implications on platelets at an older age. Therefore, it is imperative to understand platelets’ molecular and cellular mechanisms during ageing in health and disease. New knowledge will favor the development of new ways to prevent some of the age-associated complications where platelets are key players.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, Ghevaert C, Mountford JC, Marenah L, Elliott DJ, Santibanez-Koref M, Jackson MS (2016) Circular Rna enrichment in platelets is a signature of transcriptome degradation. Blood 127:e1–e11

    Article  Google Scholar 

  • Alves ADSBM, Bataglia FB, Conterno LDO, Segato R, Payão SLM (2018) Epidemiological and cytogenetic profiles of patients with hematological malignancies and their relationship with ageing. Hematol Transfus Cell Therapy 40:200–206

    Article  Google Scholar 

  • Anderson AP, Luo X, Russell W, Yin YW (2020) Oxidative damage diminishes mitochondrial Dna polymerase replication fidelity. Nucleic Acids Res 48:817–829

    Article  Google Scholar 

  • Andersson V, Hanzén S, Liu B, Molin M, Nyström T (2013) Enhancing protein disaggregation restores proteasome activity in aged cells. Ageing 5:802–812

    Google Scholar 

  • Angénieux C, Maître B, Eckly A, Lanza F, Gachet C, De La Salle H (2016) Time-dependent decay of mRNA and ribosomal RNA during platelet ageing and its correlation with translation activity. PLoS One 11:e0148064

    Article  Google Scholar 

  • Arauna D, García F, Rodríguez-Mañas L, Marrugat J, Sáez C, Alarcón M, Wehinger S, Espinosa-Parrilla Y, Palomo I, Fuentes E (2020) Older adults with frailty syndrome present an altered platelet function and an increased level of circulating oxidative stress and mitochondrial dysfunction biomarker Gdf-15. Free Radic Biol Med 149:64–71

    Article  Google Scholar 

  • Arbeithuber B, Hester J, Cremona MA, Stoler N, Zaidi A, Higgins B, Anthony K, Chiaromonte F, Diaz FJ, Makova KD (2020) Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues. PLoS Biol 18:e3000745

    Article  Google Scholar 

  • Avila C, Huang RJ, Stevens MV, Aponte AM, Tripodi D, Kim KY, Sack MN (2012) Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Exp Clin Endocrinol Diabetes 120:248–251

    Article  Google Scholar 

  • Baaten CCFMJ, Ten Cate H, Van Der Meijden PEJ, Heemskerk JWM (2017) Platelet populations and priming in hematological diseases. Blood Rev 31:389–399

    Article  Google Scholar 

  • Baccarelli AA, Byun H-M (2015) Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin Epigenetics 7

    Google Scholar 

  • Barrett TJ, Bilaloglu S, Cornwell M, Burgess HM, Virginio VW, Drenkova K, Ibrahim H, Yuriditsky E, Aphinyanaphongs Y, Lifshitz M, Xia Liang F, Alejo J, Smith G, Pittaluga S, Rapkiewicz AV, Wang J, Iancu-Rubin C, Mohr I, Ruggles K, Stapleford KA, Hochman J, Berger JS (2021) Platelets contribute to disease severity in Covid-19. J Thromb Haemost 19:3139–3153

    Article  Google Scholar 

  • Bellizzi D, D’aquila P, Montesanto A, Corsonello A, Mari V, Mazzei B, Lattanzio F, Passarino G (2012) Global DNA methylation in old subjects is correlated with frailty. Age 34:169–179

    Article  Google Scholar 

  • Blagosklonny MV (2003) Cell senescence and hypermitogenic arrest. EMBO Rep 4:358–362

    Article  Google Scholar 

  • Boeckelmann D, Wolter M, Neubauer K, Sobotta F, Lenz A, Glonnegger H, Käsmann-Kellner B, Mann J, Ehl S, Zieger B (2021) Hermansky-Pudlak syndrome: identification of novel variants in the genes Hps3, HPS5, and DTNBP1 (HPS-7). Front Pharmacol 12:786937

    Article  Google Scholar 

  • Bordoni L, Sawicka AK, Szarmach A, Winklewski PJ, Olek RA, Gabbianelli R (2020) A pilot study on the effects of l-carnitine and trimethylamine-N-oxide on platelet mitochondrial Dna methylation and CVD biomarkers in aged women. Int J Mol Sci 21:1047

    Article  Google Scholar 

  • Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25:5789

    Article  Google Scholar 

  • Brown GT, McIntyre TM (2011) Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles. J Immunol 186(9):5489–5496. https://doi.org/10.4049/jimmunol.1001623. Epub 2011 Mar 23. PMID: 21430222; PMCID: PMC3100655

    Article  Google Scholar 

  • Bruunsgaard H, Ladelund S, Pedersen AN, Schroll M, Jørgensen T, Pedersen BK (2003) Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin Exp Immunol 132:24–31

    Article  Google Scholar 

  • Bush AI, Martins RN, Rumble B, Moir R, Fuller S, Milward E, Currie J, Ames D, Weidemann A, Fischer P et al (1990) The amyloid precursor protein of Alzheimer’s disease is released by human platelets. J Biol Chem 265:15977–15983

    Article  Google Scholar 

  • Canoso RT, Rodvien R, Scoon K, Levine PH (1974) Hydrogen peroxide and platelet function. Blood 43:645–656

    Article  Google Scholar 

  • Cao Y, Cai J, Zhang S, Yuan N, Li X, Fang Y, Song L, Shang M, Liu S, Zhao W, Hu S, Wang J (2015) Loss of autophagy leads to failure in megakaryopoiesis, megakaryocyte differentiation, and thrombopoiesis in mice. Exp Hematol 43:488–494

    Article  Google Scholar 

  • Celi A, Pellegrini G, Lorenzet R, De Blasi A, Ready N, Furie BC, Furie B (1994) P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci U S A 91:8767–8771

    Article  Google Scholar 

  • Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J (2004) Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 1688:95–101

    Article  Google Scholar 

  • Cognasse F, Laradi S, Berthelot P, Bourlet T, Marotte H, Mismetti P, Garraud O, Hamzeh-Cognasse H (2019) Platelet inflammatory response to stress. Front Immunol 10:1478

    Article  Google Scholar 

  • Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, Mcredmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104

    Article  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Flint Beal M, Wallace DC (1992) Mitochondrial Dna deletions in human brain: RegiAonal variability and increase with advanced age. Nat Genet 2:324–329

    Article  Google Scholar 

  • Corsi S, Iodice S, Vigna L, Cayir A, Mathers JC, Bollati V, Byun H-M (2020) Platelet mitochondrial DNA methylation predicts future cardiovascular outcome in adults with overweight and obesity. Clinical. Epigenetics 12

    Google Scholar 

  • Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S (2010) Fibrinogen and β-amyloid association alters thrombosis and fibrinolysis: A possible contributing factor to Alzheimer’s disease. Neuron 66:695–709

    Article  Google Scholar 

  • Da Costa Martins P, García-Vallejo JJ, Van Thienen JV, Fernandez-Borja M, Van Gils JM, Beckers C, Horrevoets AJ, Hordijk PL, Zwageinga JJ (2007) P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thromb Vasc Biol 27:1023–1029

    Article  Google Scholar 

  • Dasgupta SK, Argaiz ER, Mercado JEC, Maul HOE, Garza J, Enriquez AB, Abdel-Monem H, Prakasam A, Andreeff M, Thiagarajan P (2010) Platelet senescence and phosphatidylserine exposure. Transfusion 50:2167–2175

    Article  Google Scholar 

  • Davizon-Castillo P, McMahon B, Aguila S, Bark D, Ashworth K, Allawzi A, Campbell RA, Montenont E, Nemkov T, D’alessandro A, Clendenen N, Shih L, Sanders NA, Higa K, Cox A, Padilla-Romo Z, Hernandez G, Wartchow E, Trahan GD, Nozik-Grayck E, Jones K, Pietras EM, Degregori J, Rondina MT, Di Paola J (2019) Tnf-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of ageing. Blood 134:727–740

    Article  Google Scholar 

  • Davizon-Castillo P, Rowley JW, Rondina MT (2020) Megakaryocyte and platelet transcriptomics for discoveries in human health and disease. Arterioscler Thromb Vasc Biol 40:1432–1440

    Article  Google Scholar 

  • Dayal S, Wilson KM, Motto DG, Miller FJ, Chauhan AK, Lentz SR (2013) Hydrogen peroxide promotes ageing-related platelet Hyperactivation and thrombosis. Circulation 127:1308–1316

    Article  Google Scholar 

  • Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ, Fratto CM, Tolley E, Kraiss LW, McIntyre TM, Zimmerman GA, Weyrich AS (2005) Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122(3):379–391. https://doi.org/10.1016/j.cell.2005.06.015. PMID: 16096058; PMCID: PMC4401993

    Article  Google Scholar 

  • Di Micco R, Krizhanovsky V, Baker D, D’adda Di Fagagna F (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22:75–95

    Article  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  Google Scholar 

  • Dillekås H, Rogers MS, Straume O (2019) Are 90% of deaths from cancer caused by metastases? Cancer Med 8:5574–5576

    Article  Google Scholar 

  • Dowling MR, Josefsson EC, Henley KJ, Hodgkin PD, Kile BT (2010) Platelet senescence is regulated by an internal timer, not damage inflicted by hits. Blood 116:1776–1778

    Article  Google Scholar 

  • Ed Rainger G, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, Lordkipanidzé M, Nash GB (2015) The role of platelets in the recruitment of leukocytes during vascular disease. Platelets 26:507–520

    Article  Google Scholar 

  • Etulain J, Fondevila C, Negrotto S, Schattner M (2013) Platelet-mediated angiogenesis is independent of VEGF and fully inhibited by aspirin. Br J Pharmacol 170:255–265

    Article  Google Scholar 

  • Feng W, Chang C, Luo D, Su H, Yu S, Hua W, Chen Z, Hu H, Liu W (2014) Dissection of autophagy in human platelets. Autophagy 10:642–651

    Article  Google Scholar 

  • Feng Y, Xiao Y, Yan H, Wang P, Zhu W, Cassady K, Zou Z, Wang K, Chen T, Quan Y, Wang Z, Yang S, Wang R, Li X, Gao L, Zhang C, Liu Y, Kong P, Gao L, Zhang X (2020) Sirolimus as rescue therapy for refractory/relapsed immune thrombocytopenia: results of a single-center, prospective, Single-Arm Study. Front Med (Lausanne) 7:110

    Article  Google Scholar 

  • Ferrer-Raventós P, Beyer K (2021) Alternative platelet activation pathways and their role in neurodegenerative diseases. Neurobiol Dis 159:105512

    Article  Google Scholar 

  • Freedman JE (2008) Oxidative stress and platelets. Arterioscler Thromb Vasc Biol 28:s11–s16

    Article  Google Scholar 

  • Gleissner CA, Von Hundelshausen P, Ley K (2008) Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 28:1920–1927

    Article  Google Scholar 

  • Guo Y, Cui W, Pei Y, Xu D (2019) Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway. Gynecol Oncol 153:639–650

    Article  Google Scholar 

  • Gupta N, Li W, Willard B, Silverstein RL, McIntyre TM (2014) Proteasome proteolysis supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol 34:160–168

    Article  Google Scholar 

  • Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Áine Schnell A, Hexel K, Santarella-Mellwig R, Blaszkiewicz S, Kuck A, Geiger H, Lars M, Schroeder T, Trumpp A, Krijgsveld J, Marieke (2015) Inflammation-induced emergency Megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17:422–434

    Article  Google Scholar 

  • Hartley PS (2007) Platelet senescence and death. Clin Lab 53:157–166

    Google Scholar 

  • Heilbronn LK, Ravussin E (2003) Calorie restriction and ageing: review of the literature and implications for studies in humans. Am J Clin Nutr 78:361–369

    Article  Google Scholar 

  • Hers I (2007) Insulin-like growth factor-1 potentiates platelet activation via the Irs/PI3Kalpha pathway. Blood 110:4243–4252

    Article  Google Scholar 

  • Holley AS, Miller JH, Larsen PD, Harding SA (2016) Relationship between glutathione peroxidase, platelet reactivity, and reactive oxygen species in an acute coronary syndrome population. Ann Clin Lab Sci 46:639–644

    Google Scholar 

  • Ivanov II, Apta BHR, Bonna AM, Harper MT (2019) Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep 9:13397

    Article  Google Scholar 

  • Iyer KS, Dayal S (2019) Modulators of platelet function in ageing. Platelets:1–9

    Google Scholar 

  • Jain K, Tyagi T, Patell K, Xie Y, Kadado AJ, Lee SH, Yarovinsky T, Du J, Hwang J, Martin KA, Testani J, Ionescu CN, Hwa J (2019) Age associated non-linear regulation of redox homeostasis in the anucleate platelet: implications for Cvd risk patients. EbioMedicine 44:28–40

    Article  Google Scholar 

  • Jakobs K, Reinshagen L, Puccini M, Friebel J, Wilde AB, Alsheik A, Rroku A, Landmesser U, Haghikia A, Kränkel N, Rauch-Kröhnert U (2022) Disease severity in moderate-to-severe Covid-19 is associated with platelet Hyperreactivity and innate immune activation. Front Immunol 13:844701

    Article  Google Scholar 

  • Ji W, Chen L, Yang W, Li K, Zhao J, Yan C, You C, Jiang M, Zhou M, Shen X (2022) Transcriptional landscape of circulating platelets from patients with COVID-19 reveals key subnetworks and regulators underlying SARS-CoV-2 infection: implications for immunothrombosis. Cell Biosci 12

    Google Scholar 

  • Johnston JA, Liu WW, Coulson DTR, Todd S, Murphy S, Brennan S, Foy CJ, Craig D, Irvine GB, Passmore AP (2008) Platelet β-secretase activity is increased in Alzheimer’s disease. Neurobiol Ageing 29:661–668

    Article  Google Scholar 

  • Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ (2013) The Gh/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9:366–376

    Article  Google Scholar 

  • Kessler A, Shinitzky M, Kessler B (1995) Number of platelet dense granules varies with age, schizophrenia and dementia. Dementia 6:330–333

    Google Scholar 

  • Khorana AA (2010) Venous thromboembolism and prognosis in cancer. Thromb Res 125:490–493

    Article  Google Scholar 

  • Kim S, Garcia A, Jackson SP, Kunapuli SP (2007) Insulin-like growth factor-1 regulates platelet activation through PI3-Kalpha isoform. Blood 110:4206–4213

    Article  Google Scholar 

  • Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, Ruggeri ZM, Jain RK, Folkman J, Wagner DD (2006) Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A 103:855–860

    Article  Google Scholar 

  • Kniewallner KM, De Sousa DMB, Unger MS, Mrowetz H, Aigner L (2020) Platelets in Amyloidogenic mice are activated and invade the brain. Front Neurosci 14

    Google Scholar 

  • Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Frontiers in Cell and Developmental Biology 9

    Google Scholar 

  • Kyriazis M (2020) Ageing as "time-related dysfunction": A perspective. Front Med (Lausanne) 7:371

    Article  Google Scholar 

  • Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    Article  Google Scholar 

  • Laffont B, Corduan A, Plé H, Duchez AC, Cloutier N, Boilard E, Provost P (2013) Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 122:253–261

    Article  Google Scholar 

  • Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691

    Article  Google Scholar 

  • Landry, P., Plante, I., Ouellet, D. L., Perron, M. P., Rousseau, G. & Provost, P. 2009. Existence of a microRNA pathway in anucleate platelets. Nature Structural & Molecular Biology, 16, 961–966.

    Google Scholar 

  • Lebois M, Josefsson EC (2016) Regulation of platelet lifespan by apoptosis. Platelets 27:497–504

    Article  Google Scholar 

  • Levine PH, Weinger RS, Simon J, Scoon KL, Krinsky NI (1976) Leukocyte-platelet interaction. Release of hydrogen peroxide by granulocytes as a modulator of platelet reactions. J Clin Invest 57:955–963

    Article  Google Scholar 

  • Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Zimmerman GA, Weyrich AS (2001) Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 154:485–490

    Article  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of ageing. Cell 153:1194–1217

    Article  Google Scholar 

  • Marketou M, Kontaraki J, Papadakis J, Kochiadakis G, Vrentzos G, Maragkoudakis S, Fragkiadakis K, Katsouli E, Plataki M, Patrianakos A, Chlouverakis G, Papanikolaou K, Vardas P, Parthenakis F (2019) Platelet microRNAs in hypertensive patients with and without cardiovascular disease. J Hum Hypertens 33:149–156

    Article  Google Scholar 

  • Maynard DM, Heijnen HF, Gahl WA, Gunay-Aygun M (2010) The α-granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 8:1786–1796

    Article  Google Scholar 

  • Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA (2007) Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 5:1945–1955

    Article  Google Scholar 

  • Melki I, Allaeys I, Tessandier N, Lévesque T, Cloutier N, Laroche A, Vernoux N, Becker Y, Benk-Fortin H, Zufferey A, Rollet-Labelle E, Pouliot M, Poirier G, Patey N, Belleannee C, Soulet D, McKenzie SE, Brisson A, Tremblay ME, Lood C, Fortin PR, Boilard E (2021) Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci Transl Med 13

    Google Scholar 

  • Meyer AC, Drefahl S, Ahlbom A, Lambe M, Modig K (2020) Trends in life expectancy: did the gap between the healthy and the ill widen or close? BMC Med 18

    Google Scholar 

  • Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, Mostyka M, Baxter-Stoltzfus A, Borczuk AC, Loda M, Cody MJ, Manne BK, Portier I, Harris ES, Petrey AC, Beswick EJ, Caulin AF, Iovino A, Abegglen LM, Weyrich AS, Rondina MT, Egeblad M, Schiffman JD, Yost CC (2020) Neutrophil extracellular traps contribute to immunothrombosis in Covid-19 acute respiratory distress syndrome. Blood 136:1169–1179

    Article  Google Scholar 

  • Mitchell SJ, Bernier M, Mattison JA, Aon MA, Kaiser TA, Anson RM, Ikeno Y, Anderson RM, Ingram DK, De Cabo R (2019) Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab 29:221–228.e3

    Article  Google Scholar 

  • Mohebali D, Kaplan D, Carlisle M, Supiano MA, Rondina MT (2014) Alterations in platelet function during ageing: clinical correlations with Thromboinflammatory disease in older adults. J Am Geriatr Soc 62:529–535

    Article  Google Scholar 

  • Naime ACA, Bonfitto PH, Solon C, Lopes-Pires ME, Anhê GF, Antunes E, Marcondes S (2019) Tumor necrosis factor alpha has a crucial role in increased reactive oxygen species production in platelets of mice injected with lipopolysaccharide. Platelets 30(8):1047–1052

    Article  Google Scholar 

  • Nayak MK, Kulkarni PP, Dash D (2013) Regulatory role of proteasome in determination of platelet life span. J Biol Chem 288:6826–6834

    Article  Google Scholar 

  • Ng H, Havervall S, Rosell A, Aguilera K, Parv K, Von Meijenfeldt FA, Lisman T, Mackman N, Thålin C, Phillipson M (2021) Circulating markers of neutrophil extracellular traps are of prognostic value in patients with COVID-19. Arterioscler Thromb Vasc Biol 41:988–994

    Article  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    Article  Google Scholar 

  • Passarino G, De Rango F, Montesanto A (2016) Human longevity: genetics or lifestyle? It takes two to tango, Immunity & Ageing, p 13

    Google Scholar 

  • Passarino G, Montesanto A, Dato S, Giordano S, Domma F, Mari V, Feraco E, De Benedictis G (2006) Sex and age specificity of susceptibility genes modulating survival at old age. Hum Hered 62:213–220

    Article  Google Scholar 

  • Pereira J, Soto M, Palomo I, Ocqueteau M, Coetzee LM, Astudillo S, Aranda E, Mezzano D (2002) Platelet ageing in vivo is associated with activation of apoptotic pathways: studies in a model of suppressed thrombopoiesis in dogs. Thromb Haemost 87:905–909

    Article  Google Scholar 

  • Pienimaeki-Roemer A, Konovalova T, Musri MM, Sigruener A, Boettcher A, Meister G, Schmitz G (2017) Transcriptomic profiling of platelet senescence and platelet extracellular vesicles. Transfusion 57:144–156

    Article  Google Scholar 

  • Pourkarim R, Farahpour MR, Rezaei SA (2022) Comparison effects of platelet-rich plasma on healing of infected and non-infected excision wounds by the modulation of the expression of inflammatory mediators: experimental research. Eur J Trauma Emerg Surg

    Google Scholar 

  • Praticò D, Iuliano L, Ghiselli A, Alessandri C, Violi F (1991) Hydrogen peroxide as trigger of platelet aggregation. Haemostasis 21:169–174

    Google Scholar 

  • Pratico D, Iuliano L, Pulcinelli FM, Bonavita MS, Gazzaniga PP, Violi F (1992) Hydrogen peroxide triggers activation of human platelets selectively exposed to nonaggregating concentrations of arachidonic acid and collagen. J Lab Clin Med 119:364–370

    Google Scholar 

  • Puurunen MK, Hwang SJ, Larson MG, Vasan RS, O’donnell CJ, Tofler G, Johnson AD (2018) Adp platelet Hyperreactivity predicts cardiovascular disease in the Fhs (Framingham heart study). J Am Heart Assoc 7

    Google Scholar 

  • Rand ML, Wang H, Bang KW, Poon KS, Packham MA, Freedman J (2004) Procoagulant surface exposure and apoptosis in rabbit platelets: association with shortened survival and steady-state senescence. J Thromb Haemost 2:651–659

    Article  Google Scholar 

  • Raskob GE, Angchaisuksiri P, Blanco AN, Buller H, Gallus A, Hunt BJ, Hylek EM, Kakkar A, Konstantinides SV, Mccumber M, Ozaki Y, Wendelboe A, Weitz JI (2014) Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol 34:2363–2371

    Article  Google Scholar 

  • Saez I, Vilchez D (2014) The mechanistic links between proteasome activity, ageing and Age related diseases. Curr Genomics 15:38–51

    Article  Google Scholar 

  • Schiavon R, Freeman GE, Guidi GC, Perona G, Zatti M, Kakkar VV (1984) Selenium enhances prostacyclin production by cultured endothelial cells: possible explanation for increased bleeding times in volunteers taking selenium as a dietary supplement. Thromb Res 34:389–396

    Article  Google Scholar 

  • Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW, Buerke M, Tilley RE, Rondina MT, Harris EM, Kraiss LW, Mackman N, Zimmerman GA, Weyrich AS (2006) Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 203(11):2433–2440. https://doi.org/10.1084/jem.20061302. Epub 2006 Oct 23. PMID: 17060476; PMCID: PMC2118136

    Article  Google Scholar 

  • Shashkin PN, Brown GT, Ghosh A, Marathe GK, McIntyre TM (2008) Lipopolysaccharide is a direct agonist for platelet RNA splicing. J Immunol 181(5):3495–3502. https://doi.org/10.4049/jimmunol.181.5.3495. PMID: 18714022; PMCID: PMC2551315

    Article  Google Scholar 

  • Shi DS, Smith MCP, Campbell RA, Zimmerman PW, Franks ZB, Kraemer BF, Machlus KR, Ling J, Kamba P, Schwertz H, Rowley JW, Miles RR, Liu Z-J, Sola-Visner M, Italiano JE, Christensen H, Kahr WHA, Li DY, Weyrich AS (2014) Proteasome function is required for platelet production. J Clin Investig 124:3757–3766

    Article  Google Scholar 

  • Shi R, Ge L, Zhou X, Ji WJ, Lu RY, Zhang YY, Zeng S, Liu X, Zhao JH, Zhang WC, Jiang TM, Li YM (2013) Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb Res 131:508–513

    Article  Google Scholar 

  • Singh M, Akkaya S, Preuß M, Rademacher F, Tohidnezhad M, Kubo Y, Behrendt P, Weitkamp JT, Wedel T, Lucius R, Gläser R, Harder J, Bayer A (2022) Platelet-released growth factors influence wound healing-associated genes in human keratinocytes and ex vivo skin explants. Int J Mol Sci 23

    Google Scholar 

  • Sitte N (2000) Proteasome inhibition by lipofuscin/ceroid during postmitotic ageing of fibroblasts. Faseb J 14:1490–1498

    Article  Google Scholar 

  • Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, Ntinopoulou M, Sertaridou E, Tsironidou V, Tsigalou C, Tektonidou M, Konstantinidis T, Papagoras C, Mitroulis I, Germanidis G, Lambris JD, Ritis K (2020) Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in Covid-19 immunothrombosis. J Clin Invest 130:6151–6157

    Article  Google Scholar 

  • Steiner M (1983) Effect of alpha-tocopherol administration on platelet function in man. Thromb Haemost 49:73–77

    Article  Google Scholar 

  • Sun X, Chen W-D, Wang Y-D (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6

    Google Scholar 

  • Supernat A, Popęda M, Pastuszak K, Best MG, Grešner P, Veld SIT, Siek B, Bednarz-Knoll N, Rondina MT, Stokowy T, Wurdinger T, Jassem J, Żaczek AJ (2021) Transcriptomic landscape of blood platelets in healthy donors. Sci Rep 11

    Google Scholar 

  • Tajeddinn W, Fereshtehnejad SM, Seed Ahmed M, Yoshitake T, Kehr J, Shahnaz T, Milovanovic M, Behbahani H, Höglund K, Winblad B, Cedazo-Minguez A, Jelic V, Järemo P, Aarsland D (2016) Association of Platelet Serotonin Levels in Alzheimer’s disease with clinical and cerebrospinal fluid markers. J Alzheimers Dis 53:621–630

    Article  Google Scholar 

  • Terman A, Sandberg S (2002) Proteasome inhibition enhances lipofuscin formation. Ann N Y Acad Sci 973:309–312

    Article  Google Scholar 

  • Un D (2013) World population prospects: the 2012 revision. UN Department of Economic and Social Affairs

    Google Scholar 

  • Venturini W, Olate-Briones A, Valenzuela C, Méndez D, Fuentes E, Cayo A, Mancilla D, Segovia R, Brown NE, Moore-Carrasco R (2020) Platelet activation is triggered by factors secreted by senescent endothelial Hmec-1 cells in vitro. Int J Mol Sci 21

    Google Scholar 

  • Wang CY, Ma S, Bi SJ, Su L, Huang SY, Miao JY, Ma CH, Gao CJ, Hou M, Peng J (2019) Enhancing autophagy protects platelets in immune thrombocytopenia patients. Ann Transl Med 7(7):134. https://doi.org/10.21037/atm.2019.03.04. PMID: 31157255; PMCID: PMC6511561

    Article  Google Scholar 

  • Wei Soong N, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–323

    Article  Google Scholar 

  • Weyrich AS, Dixon DA, Pabla R, Elstad MR, McIntyre TM, Prescott SM, Zimmerman GA (1998) Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci U S A 95(10):5556–5561. https://doi.org/10.1073/pnas.95.10.5556. PMID: 9576921; PMCID: PMC20416

    Article  Google Scholar 

  • Wu T, Chen L, Zhou L, Xu J, Guo K (2021) Platelets transport β-amyloid from the peripheral blood into the brain by destroying the blood-brain barrier to accelerate the process of Alzheimer’s disease in mouse models. Ageing 13:7644–7659

    Google Scholar 

  • Xia L, Zeng Z, Tang WH (2018) The role of platelet microparticle associated microRNAs in cellular crosstalk. Front Cardiovasc Med 5:29

    Article  Google Scholar 

  • Yamanishi J, Sano H, Saito K, Furuta Y, Fukuzaki H (1985) Plasma concentrations of platelet-specific proteins in different stages of essential hypertension: interactions between platelet aggregation, blood lipids and age. Thromb Haemost 54:539–543

    Article  Google Scholar 

  • Yan S, Liu X, Ke X, Xian Z, Peng C, Wang X, Chen M (2020) Screening on platelet LncRNA expression profile discloses novel residual platelet reactivity biomarker. Int J Lab Hematol 42:661–668

    Article  Google Scholar 

  • Yang J, Zhou X, Fan X, Xiao M, Yang D, Liang B, Dai M, Shan L, Lu J, Lin Z, Liu R, Liu J, Wang L, Zhong M, Jiang Y, Bai X (2016) mTORC1 promotes ageing-related venous thrombosis in mice via elevation of platelet volume and activation. Blood 128:615–624

    Article  Google Scholar 

  • Zaid Y, Lahlimi Q, Khalki L, Zaid N, Oudghiri M, Cheikh A, Naya A, Merhi Y, Guessous F (2022) Aspirin use reduces platelet Hyperreactivity and degranulation in COVID-19 patients. Semin Thromb Hemost

    Google Scholar 

  • Zhang JJ, Dong X, Liu GH, Gao YD (2022) Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clin Rev Allergy Immunol:1–18

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health under the award number K99HL156058-01 and the Hemophilia and Thrombosis Center from the University of Colorado School of Medicine. We thank Dr. Brandon McMahon from the Hematology Department of the University of Colorado, School of Medicine in the Anschutz Medical Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Davizon-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojas-Sanchez, G., Davizon-Castillo, P. (2023). An Insight into Platelets at Older Age: Cellular and Clinical Perspectives. In: Harris, J.R., Korolchuk, V.I. (eds) Biochemistry and Cell Biology of Ageing: Part III Biomedical Science. Subcellular Biochemistry, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-031-21410-3_13

Download citation

Publish with us

Policies and ethics