Skip to main content

Nonlocal Operator Method for Dynamic Brittle Fracture Based on an Explicit Phase Field Model

  • Chapter
  • First Online:
Computational Methods Based on Peridynamics and Nonlocal Operators

Abstract

In this chapter, we present a nonlocal operator method (NOM) for dynamic fracture exploiting an explicit phase field model. The nonlocal strong forms of the phase field and the associated mechanical model are derived as integral forms by a variational principle. The equations are decoupled and solved in time by an explicit scheme employing the Verlet-velocity algorithm for the mechanical field and an adaptive sub-step scheme for the phase field model. The sub-step scheme reduces phase field residual adaptively in a few sub-steps and thus achieves a rate-independent phase field model. The explicit scheme avoids the calculation of the anisotropic stiffness tensor in the implicit phase field model. One advantage of the NOM is its ease of implementation. The method does not require any shape functions and the associated matrices and vectors are obtained automatically after defining the energy of the system. Hence, the approach can be easily extended to more complex coupled problems. Several numerical examples are presented to demonstrate the performance of the current method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosio L, Tortorelli V (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun Pure Appl Math 43(8):999–1036

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    Article  MATH  Google Scholar 

  • Borden M, Verhoosel C, Scott M, Hughes T, Landis C (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  MATH  Google Scholar 

  • Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Struct 33(8):1083–1103

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. Int J Numer Methods Eng 83(10):1273–1311

    Google Scholar 

  • Ren H, Zhuang X, Anitescu C, Rabczuk T (2019) An explicit phase field method for brittle dynamic fracture. Comput Struct 217:45–56

    Google Scholar 

  • Miehe C (2011) A multi-field incremental variational framework for gradient-extended standard dissipative solids. J Mech Phys Solids 59(4):898–923

    Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2):342–368

    Article  MATH  Google Scholar 

  • Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99(12):906–924

    Article  MathSciNet  MATH  Google Scholar 

  • Kalthoff J, Winkler S (1988) Failure mode transition at high rates of shear loading. DGM Informat Impact Load Dyn Behav Mater 1:185–195

    Google Scholar 

  • Karma A, Kessler D, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4):045501

    Article  Google Scholar 

  • Kim S, Kim W, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60(6):7186

    Article  Google Scholar 

  • Li S, Liu W, Rosakis A, Belytschko T, Hao W (2002) Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. Int J Solids Struct 39(5):1213–1240

    Article  MATH  Google Scholar 

  • Miehe C (2011) A multi-field incremental variational framework for gradient-extended standard dissipative solids. J Mech Phys Solids 59(4):898–923

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (1999) The mathematica book. Assembly Automation

    Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. Int J Numer Methods Eng 83(10):1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen V, Wu J (2018) Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput Methods Appl Mech Eng 340:1000–1022

    Article  MathSciNet  MATH  Google Scholar 

  • Pham K, Amor H, Marigo J, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20(4):618–652

    Article  Google Scholar 

  • Ren H, Zhuang X, Anitescu C, Rabczuk T (2019) An explicit phase field method for brittle dynamic fracture. Comput Struct 217:45–56

    Article  Google Scholar 

  • Borden M, Verhoosel C, Scott M, Hughes T, Landis C (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Google Scholar 

  • Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54(5):1141–1161

    Article  MathSciNet  MATH  Google Scholar 

  • Song JH, Areias PM, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6):868–893

    Article  MATH  Google Scholar 

  • Stukowski A (2009) Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Model Simul Mater Sci Eng 18(1):015012

    Article  MathSciNet  Google Scholar 

  • Vahid Z, Shen Y (2016) Massive parallelization of the phase field formulation for crack propagation with time adaptivity. Comput Methods Appl Mech Eng 312:224–253

    Article  MathSciNet  MATH  Google Scholar 

  • Li S, Liu W, Rosakis A, Belytschko T, Hao W (2002) Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. Int J Solids Struct 39(5):1213–1240

    Google Scholar 

  • Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99(12):906–924

    Google Scholar 

  • Wang T, Ye X, Liu Z, Chu D, Zhuang Z (2019) Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method. Comput Mech 1–20

    Google Scholar 

  • Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timon Rabczuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabczuk, T., Ren, H., Zhuang, X. (2023). Nonlocal Operator Method for Dynamic Brittle Fracture Based on an Explicit Phase Field Model. In: Computational Methods Based on Peridynamics and Nonlocal Operators. Computational Methods in Engineering & the Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-20906-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20906-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20905-5

  • Online ISBN: 978-3-031-20906-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics