Skip to main content

The Centrosome Cycle within the Cell Cycle

  • Chapter
  • First Online:
The Centrosome and its Functions and Dysfunctions

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 235))

Abstract

The synchronized distribution of centrosomal and genetic materials to the dividing daughter cells is critically important and depends on precisely orchestrated processes on structural and molecular levels. Structural and functional relationships between the nucleus and centrosomes facilitate cellular communication and coordination of cell cycle control and progression which becomes especially important during the transition from interphase to mitosis when synchrony between centrosomes and nuclear events is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, Capalbo L, Jacamo RO, Barbosa-Morais N, Le XF, Australian Ovarian Cancer Study Group, Vivas-Mejia P, Lopez-Berestein G, Grandjean G, Bartholomeusz G, Liao W, Andreeff M, Bowtell D, Glover DM, Sood AK, Bast RC Jr (2010) SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 18(2):109–121

    Article  CAS  Google Scholar 

  • Alvarez Sedó CA, Schatten H, Combelles C, Rawe VY (2011) The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 17(6):392–398. https://doi.org/10.1093/molehr/gar009

    Article  CAS  Google Scholar 

  • Askjaer P, Galy V, Hannak E, Mattaj IW (2002) Ran GTPase cycle and importins α and β are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol Biol Cell 13:4355–4370

    Article  CAS  Google Scholar 

  • Awan A, Olivieri RO, Jensen PL, Christensen ST, Andersen CY (2010) Immunofluorescence and mRNA analysis of human embryonic stem cells (hESCs) grown under feeder-free conditions. Methods Mol Biol 584:195–210

    Article  CAS  Google Scholar 

  • Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19:R526–R535

    Article  CAS  Google Scholar 

  • Bisgrove BW, Yost HJ (2006) The roles of cilia in developmental disorders and disease. Development 133(21):4131–4143

    Article  CAS  Google Scholar 

  • Blagden SP, Glover DM (2003) Polar expeditions—provisioning the centrosome for mitosis. Nature Cell Biol 5:505–511

    Article  CAS  Google Scholar 

  • Boutros R (2012) Chap. 11. Regulation of centrosomes by cyclin-dependent kinases. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, Wang B, Flavell RA, Rakic P, Town T (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci U S A 105:13127–13132

    Article  CAS  Google Scholar 

  • Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5(9):739–751

    Article  CAS  Google Scholar 

  • Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 7:R788–R795

    Article  CAS  Google Scholar 

  • Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, Durand G, Pous C (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12:2047–2060. https://doi.org/10.1091/mbc.12.7.2047

    Article  CAS  Google Scholar 

  • Cole NB, Sciaky N, Marotta A, Song J, Lippincott- Schwartz J (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7:631–650. https://doi.org/10.1091/mbc.7.4.631

    Article  CAS  Google Scholar 

  • Corthesy-Theulaz I, Pauloin A, Pfeffer SR (1992) Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol 118:1333–1345. https://doi.org/10.1083/jcb.118.6.1333

    Article  CAS  Google Scholar 

  • D’Angelo A, Franco B (2009) The dynamic cilium in human diseases. PathoGenetics 2(3):1–15

    Google Scholar 

  • Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159–F1169

    Article  CAS  Google Scholar 

  • Efimov A et al (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930. https://doi.org/10.1016/j.devcel.2007.04.002

    Article  CAS  Google Scholar 

  • Ferguson RL, Maller JL (2010) Centrosomal localization of cyclin E-Cdk2 is required for initiation of DNA synthesis. Curr Biol 20:856–860

    Article  CAS  Google Scholar 

  • Fisk HA (2012) Chap. 8. Many pathways to destruction: the centrosome and its control by and role in regulated proteolysis. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK (1999) Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13(17):2242–2257

    Article  CAS  Google Scholar 

  • Fridkin A, Mills E, Margalit A, Neufeld E, Lee KK, Feinstein N, Cohen M, Wilson KL, Gruenbaum Y (2004) Matefin, a Caenorhabditis elegans germ line-specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc Natl Acad Sci U S A 101:6987–6992

    Article  CAS  Google Scholar 

  • Fukasawa K (2012) Chap. 10. Molecular links between centrosome duplication and other cell cycle associated events. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Galy V, Askjaer P, Franz C, López-Iglesias C, Mattaj IW (2006) MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr Biol 16(17):1748–1756

    Article  CAS  Google Scholar 

  • Gehmlich K, Haren L, Merdes A (2004) Cyclin B degradation leads to NuMA release from dynein/dynactin and from spindle poles. EMBO Rep 5:97–103

    Article  CAS  Google Scholar 

  • Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008) Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11(3):277–284

    Article  CAS  Google Scholar 

  • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141:51–59. https://doi.org/10.1083/jcb.141.1.51

    Article  CAS  Google Scholar 

  • Haren L, Stearns T, Lüders J (2009) Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS One 4(6):e5976

    Article  Google Scholar 

  • Hassounah NB, Bunch TA, McDermott KM (2012) Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on hedgehog signaling. Clin Cancer Res 18(9):2429–2435

    Article  CAS  Google Scholar 

  • Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6:928–940

    Article  CAS  Google Scholar 

  • Hoppeler-Lebel A, Celati C, Bellett G, Mogensen MM, Klein-Hitpass L, Bornens M, Tassin AM (2007) Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci 120:3299–3308. https://doi.org/10.1242/jcs.013102

    Article  CAS  Google Scholar 

  • Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM (1999) GMAP-210, a cis-Golgi network associated protein, is a minus end micro tubule binding protein. J Cell Biol 145:83–98. https://doi.org/10.1083/jcb.145.1.83

    Article  CAS  Google Scholar 

  • Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, Izawa I, Inagaki M (2012) Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol 197(3):391–405

    Article  CAS  Google Scholar 

  • Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116:1561–1570

    Article  CAS  Google Scholar 

  • Kammerer S, Roth RB, Hoyal CR, Reneland R, Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F, Rehbock J, Cantor CR, Nelson MR, Brown A (2005) Association of the NuMA region on chromosome 11q13 with breast cancer susceptibility. Proc Natl Acad Sci USA 102(6):2004–2009

    Article  CAS  Google Scholar 

  • Karanikolas B, Sütterlin C (2012) Chap. 7. Functional associations between the Golgi apparatus and the centrosome in mammalian cells. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Pololike kinase activities in mitotic cells. Sci Signal 4(179):rs5

    Article  CAS  Google Scholar 

  • Khodjakov A, Rieder CL (1999) The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol 146(3):585–596

    Article  CAS  Google Scholar 

  • Kiprilov EK, Awan A, Desprat R, Velho M, Clement CA, Byskov AG, Andersen CY, Satir P, Bouhassira EE, Christensen ST, Hirsch RE (2008) Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J Cell Biol 180:897–904

    Article  CAS  Google Scholar 

  • Kobayashi T, Dynlacht BD (2011) Regulating the transition from centriole to basal body. J Cell Biol 193:435–444

    Article  CAS  Google Scholar 

  • Krauss SW, Lee G, Chasis JA, Mohandas N, Heald R (2004) Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro. J Biol Chem 279:27591–27598

    Article  CAS  Google Scholar 

  • Krauss SW, Spence JR, Bahmanyar S, Barth AI, Go MM, Czerwinski D, Meyer AJ (2008) Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase. Mol Cell Biol 28:2283–2294

    Article  CAS  Google Scholar 

  • Lee JSH, Hale CM, Panorchan P, Khatau SB, George JP, Tseng Y, Stewart CL, Hodzic D, Wirtz D (2007) Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J 93(7):2542–2552

    Article  CAS  Google Scholar 

  • Li Y, Hu J (2015) Small GTPases act as cellular switches in the context of Cilia. In: Schatten H (ed) The cytoskeleton in health and disease. Springer, New York

    Google Scholar 

  • Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155:1941–1951

    Article  CAS  Google Scholar 

  • Lingle WL, Salisbury JL (2000) The role of the centrosome in the development of malignant tumors. Curr Top Dev Biol 49:313–329

    Article  CAS  Google Scholar 

  • Liu S, Ginestier C, Ou SJ et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624

    Article  CAS  Google Scholar 

  • Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 104(33):13325–13330. Erratum in: Proc Natl Acad Sci U S A. 2008 105(2):825

    Article  CAS  Google Scholar 

  • Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115(7):825–836

    Article  CAS  Google Scholar 

  • Mardin BR, Agircan FG, Lange C, Schiebel E (2011) Plk1 controls the Nek2A-PP1γ antagonism in centrosome disjunction. Curr Biol 21:1145–1151

    Article  CAS  Google Scholar 

  • Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, Fry AM, Schiebel E (2010) Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol 12(12):1166–1176

    Article  CAS  Google Scholar 

  • Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, Hausmanowa-Petrusewicz I, Ramaekers FC, Broers JL, Blankesteijn WM, Salpingidou G, Wilson RG, Ellis JA, Hutchison CJ (2006) The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J 25:3275–3285

    Article  CAS  Google Scholar 

  • Merdes A, Cleveland DA (1998) The role of NuMA in the interphase nucleus. J Cell Sci 111:71–79

    Article  CAS  Google Scholar 

  • Meyer AJ, Almendrala DK, Go MM, Krauss SW (2011) Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J Cell Sci 124(Pt 9):1433–1444

    Article  CAS  Google Scholar 

  • Meyerzon M, Gao Z, Liu J, Wu JC, Malone CJ, Starr DA (2009) Centrosome attachment to the C. elegans male pronucleus is dependent on the surface area of the nuclear envelope. Dev Biol 327(2):433–446

    Article  CAS  Google Scholar 

  • Michaud EJ, Yoder BK (2006) The primary cilium in cell signaling and cancer. Cancer Res 66:6463–6467

    Article  CAS  Google Scholar 

  • Nigg EA (2007) Centrosome duplication: of rules and licenses. Trends Cell Biol 17(5):215–221

    Article  CAS  Google Scholar 

  • Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13(10):1154–1160

    Article  CAS  Google Scholar 

  • O’Regan L, Blot J, Fry AM (2007) Mitotic regulation by NIMA-related kinases. Cell Div 2:25

    Article  Google Scholar 

  • Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E, Liu W, Ralston E (2013) Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol 203:205–213. https://doi.org/10.1083/jcb.201304063

    Article  CAS  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE et al (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140

    Article  CAS  Google Scholar 

  • Pan J, Snell W (2007) The primary cilium: keeper of the key to cell division. Cell 129:1255–1257

    Article  CAS  Google Scholar 

  • Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, Filipczyk A, Koh KL, Tellis I, Nguyen LT, Pera MF (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23:1541–1548

    Article  CAS  Google Scholar 

  • Pedersen LB, Veland IR, Schrøder JM, Christensen ST (2008) Assembly of primary cilia. Dev Dyn 237(8):1993–2006

    Article  CAS  Google Scholar 

  • Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7(9):644–656

    Article  CAS  Google Scholar 

  • Prosser SL, Fry AM (2012) Chap. 9. Regulation of the centrosome cycle by protein degradation. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Quarmby LM, Parker JDK (2005) Cilia and the cell cycle? J Cell Biol 169(5):707–710

    Article  CAS  Google Scholar 

  • Raff JW, Jeffers K, Huang JY (2002) The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J Cell Biol 157:1139–1149

    Article  CAS  Google Scholar 

  • Rios RM (2014) The centrosome–Golgi apparatus nexus. Phil Trans R Soc B 369:20130462. https://doi.org/10.1098/rstb.2013.0462

    Article  CAS  Google Scholar 

  • Rios RM, Sanchis A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335. https://doi.org/10.1016/j.cell.2004.07.012

    Article  CAS  Google Scholar 

  • Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ (2007) A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J Cell Biol 178(6):897–904

    Article  CAS  Google Scholar 

  • Sankaran S, Starita LM, Simons AM, Parvin JD (2006) Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res 66:4100–4107

    Article  CAS  Google Scholar 

  • Santos N, Reiter JF (2008) Building it up and taking it down: the regulation of vertebrate ciliogenesis. Dev Dynamics 237:1972–1981

    Article  Google Scholar 

  • Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  CAS  Google Scholar 

  • Satir P, Christensen ST (2008) Structure and function of mammalian cilia. Histochem Cell Biol 129:687–693

    Article  CAS  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  CAS  Google Scholar 

  • Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    Article  CAS  Google Scholar 

  • Schatten H (2013) Chapter 12. The impact of centrosome abnormalities on breast cancer development and progression with a focus on targeting centrosomes for breast cancer therapy. In: Cell and molecular biology of breast cancer. Heide Schatten, Springer Science and Business Media, LLC: Berlin

    Chapter  Google Scholar 

  • Schatten H (2014) Chap 12. The role of centrosomes in cancer stem cell functions. In: Schatten H (ed) Cell and molecular biology and imaging of stem cells, 1st edn. Wiley, pp 259–279

    Google Scholar 

  • Schatten H, Ripple M (2018) The impact of centrosome pathologies on prostate cancer development and progression. In: Schatten H (ed) Cell and molecular biology of prostate cancer: updates, insights and new frontiers. Springer, New York

    Chapter  Google Scholar 

  • Schatten H, Sun QY (2010) The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin Cell Dev Biol 21:174–184

    Article  Google Scholar 

  • Schatten H, Sun QY (2011) The significant role of centrosomes in stem cell division and differentiation. Microsc Microanal 17(4):506–512

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2011a) The significant role of centrosomes in stem cell division and differentiation. Microsc Microanal 17(4):506–512

    Article  CAS  Google Scholar 

  • Schatten H, Sun Q-Y (2011b) Centrosome dynamics during meiotic spindle formation in oocyte maturation. Mol Reprod Dev 78:757–768

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2015a) Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod Fertil Dev 27(6):934–943. https://doi.org/10.1071/RD14493

    Article  CAS  Google Scholar 

  • Schatten H, Sun Q-Y (2015b) Centrosome-microtubule interactions in health, disease, and disorders. In: Schatten H (ed) The cytoskeleton in health and disease. Springer, New York

    Chapter  Google Scholar 

  • Schatten H, Sun QY (2018) Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 150:303–325. https://doi.org/10.1007/s00418-018-1698-1

    Article  CAS  Google Scholar 

  • Schatten H, Wiedemeier A, Taylor M, Lubahn D, Greenberg MN, Besch-Williford C, Rosenfeld C, Day K, Ripple M (2000) Centrosome-centriole abnormalities are markers for abnormal cell divisions and cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) model. Biol Cell 92:331–340

    Article  CAS  Google Scholar 

  • Schneider L, Clement CA, Teilmann SC et al (2005) PDGFR alpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15:1861–1866

    Article  CAS  Google Scholar 

  • Sharma N, Berbari NF, Yoder BK (2008) Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 85:371–427

    Article  CAS  Google Scholar 

  • Simon DN, Wilson KL (2011) The nucleoskeleton as a genome-associated dynamic ‘network of networks’. Nat Rev Mol Cell Biol 12:695–708

    Article  CAS  Google Scholar 

  • Skaar JR, Pagano M (2009) Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol 21(6):816–824

    Article  CAS  Google Scholar 

  • Åšlusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS, Besch-Williford CL, Lubahn DB (2010) Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res 70(8):3382–3390

    Article  Google Scholar 

  • Sorokin S (1962) Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15(2):363–377

    Article  CAS  Google Scholar 

  • Sun QY, Schatten H (2006) Multiple roles of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front Biosci 11:1137–1146

    Article  CAS  Google Scholar 

  • Sun Q-Y, Schatten H (2007) Centrosome inheritance after fertilization and nuclear transfer in mammals. In: Sutovsky P (ed) Somatic cell nuclear transfer, Landes Bioscience. Adv Exp Med Biol 591:58–71

    Article  Google Scholar 

  • Takahashi M, Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y (1999) Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus. J Biol Chem 274:17267–17274. https://doi.org/10.1074/jbc.274.24.17267

    Article  CAS  Google Scholar 

  • Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246:263–279. https://doi.org/10.1006/excr.1998.4326

    Article  CAS  Google Scholar 

  • Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K (2001) Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276:21529–21537

    Article  CAS  Google Scholar 

  • Trinkle-Mulcahy L, Lamond AI (2006) Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18:623–631

    Article  CAS  Google Scholar 

  • Tsou MB, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951

    Google Scholar 

  • Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:39–53

    Article  Google Scholar 

  • Verde I, Pahlke G, Salanova M, Zhang G, Wang S, Coletti D, Onuffer J, Jin SL, Conti M (2001) Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276:11189–11198. https://doi.org/10.1074/jbc.M006546200

    Article  CAS  Google Scholar 

  • Wang Z, Wu T, Shi L, Zhang L, Zheng W, Qu JY, Niu R, Qi RZ (2010) Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem 285:22658–22665. https://doi.org/10.1074/jbc.M110.105965

    Article  CAS  Google Scholar 

  • Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81

    Article  CAS  Google Scholar 

  • Whitfield JF (2008) The solitary (primary) cilium—a mechanosensory toggle switch in bone and cartilage cells. Cell Signal 20(6):1019–1024

    Article  CAS  Google Scholar 

  • Yadav S, Puri S, Linstedt AD (2009) A primary role for Golgi positioning in directed secretion, cell polarity, wound healing. Mol Biol Cell 20:1728–1736. https://doi.org/10.1091/mbc.E08-10-1077

    Article  CAS  Google Scholar 

  • Yadav S, Puthenveedu MA, Linstedt AD (2012) Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 23:153–165. https://doi.org/10.1016/j.devcel.2012.05.023

    Article  CAS  Google Scholar 

  • Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H. (2022). The Centrosome Cycle within the Cell Cycle. In: The Centrosome and its Functions and Dysfunctions. Advances in Anatomy, Embryology and Cell Biology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-031-20848-5_2

Download citation

Publish with us

Policies and ethics