Skip to main content

Material Jetting

  • Chapter
  • First Online:
Springer Handbook of Additive Manufacturing

Part of the book series: Springer Handbooks ((SHB))

Abstract

Material jetting is a process whereby a 3D structure can be manufactured using either a continuous jet or drop-on-demand jet. Material is transformed into a liquid state and actuated for a stream of material or droplets to be generated and ejected through a nozzle. A range of droplet sizes can be produced, depending on the nozzle’s shape and dimensions. The jetted material is then deposited in a controlled fashion onto target substrates, similar or dissimilar, to create 3D structures from computer-aided design (CAD) models. In this section, jetting mechanisms for both polymers and metals are explored, while shedding the light on their respective advantages and shortfalls. The characteristic properties of the parts fabricated using this family of techniques are discussed in view of the industrial context and the interest of the academic community. Examples for the applications that widely benefit from material jetting are provided with special attention to the prospect of using these technologies to achieve the ultimate goal of multi-material 3D printing for multi-functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amirzadeh, A., Raessi, M., Chandra, S.: Producing molten metal droplets smaller than the nozzle diameter using a pneumatic drop-on-demand generator. Exp. Thermal Fluid Sci. 47, 26–33 (2013). https://doi.org/10.1016/J.EXPTHERMFLUSCI.2012.12.006

    Article  Google Scholar 

  2. Aziz, S.D., Chandra, S.: Impact, recoil and splashing of molten metal droplets. Int. J. Heat Mass Transf. 43(16), 2841–2857 (2000). https://doi.org/10.1016/S0017-9310(99)00350-6

    Article  Google Scholar 

  3. Boehm, R.D., Miller, P.R., Daniels, J., Stafslien, S., Narayan, R.J.: Inkjet printing for pharmaceutical applications. Mater. Today. 17(5), 247 (2014). https://doi.org/10.1016/j.mattod.2014.04.027

    Article  Google Scholar 

  4. Boland, T., Xu, T., Damon, B., Cui, X.: Application of inkjet printing to tissue engineering. Biotechnol. J. 1(9), 910 (2006). https://doi.org/10.1002/biot.200600081

    Article  Google Scholar 

  5. Callister, W.D.: Materials Science and Engineering: An Introduction, vol. 12, Issue 1). Elsevier BV.. Wiley (2007). https://doi.org/10.1016/0261-3069(91)90101-9

    Book  Google Scholar 

  6. Calvert, P.: Inkjet printing for materials and devices. Chem. Mater. 13(10), 3299 (2001). https://doi.org/10.1021/cm0101632

    Article  Google Scholar 

  7. CazĂłn, A., Morer, P., Matey, L.: PolyJet technology for product prototyping: tensile strength and surface roughness properties. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 228(12), 1664 (2014). https://doi.org/10.1177/0954405413518515

    Article  Google Scholar 

  8. Chao, Y., Qi, L., Xiao, Y., Luo, J., Zhou, J.: Manufacturing of micro thin-walled metal parts by micro-droplet deposition. J. Mater. Process. Technol. 212(2), 484–491 (2012). https://doi.org/10.1016/J.JMATPROTEC.2011.10.015

    Article  Google Scholar 

  9. Chen, R.R., Mooney, D.J.: Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 20(8) (2003). https://doi.org/10.1023/A:1025034925152

  10. Fang, M., Chandra, S., Park, C.B.: Experiments on remelting and solidification of molten metal droplets deposited in vertical columns. J. Manuf. Sci. Eng. 129, 311 (2007a). https://doi.org/10.1115/1.2540630

    Article  Google Scholar 

  11. Fang, M., Chandra, S., Park, C.B.: Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyp. J. 14(1), 44–52 (2007b). https://doi.org/10.1108/13552540810841553

    Article  Google Scholar 

  12. Gerdes, B., Jehle, M., Domke, M., Zengerle, R., Koltay, P., Riegger, L.: Drop-on-demand generation of aluminum alloy microdroplets at 950 °C using the StarJet technology. In: TRANSDUCERS 2017 – 19th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 690–693 (2017). https://doi.org/10.1109/TRANSDUCERS.2017.7994142

    Chapter  Google Scholar 

  13. Gilani, N., Aboulkhair, N.T., Simonelli, M., East, M., Ashcroft, I., Hague, R.J.M.: Insights into drop-on-demand metal additive manufacturing through an integrated experimental and computational study. Addit. Manuf. 48(Part B) (2021). https://doi.org/10.1016/j.addma.2021.102402

  14. Gilani, N., Aboulkhair, N.T., Simonelli, M., East, M., Ashcroft, I., Hague, R.J.M.: From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet. Addit. Manuf. 55 (2022). https://doi.org/10.1016/j.addma.2022.102827

  15. Haferl, S., Poulikakos, D.: Experimental investigation of the transient impact fluid dynamics and solidification of a molten microdroplet pile-up. Int. J. Heat Mass Transf. 46(3), 535 (2003). https://doi.org/10.1016/S0017-9310(02)00289-2

    Article  Google Scholar 

  16. Heeger, A.J., Kivelson, S., Schrieffer, J.R., Su, W.-P.: Solitons in conducting polymers. Rev. Mod. Phys. 60(3), 781–850 (1988). https://doi.org/10.1103/RevModPhys.60.781

    Article  Google Scholar 

  17. Himmel, B., Rumschoettel, D., Volk, W.: Tensile properties of aluminium 4047A built in droplet-based metal printing. Rapid Prototyp. J. 25(2), 427–432 (2019). https://doi.org/10.1108/RPJ-02-2018-0039

    Article  Google Scholar 

  18. Huang, J., Qi, L., Luo, J., Zhao, L., Yi, H.: Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field. Int. J. Mach. Tools Manuf. 148, 103474 (2020). https://doi.org/10.1016/j.ijmachtools.2019.103474

    Article  Google Scholar 

  19. Jang, J., Ha, J., Cho, J.: Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 19(13), 1772 (2007). https://doi.org/10.1002/adma.200602127

    Article  Google Scholar 

  20. Jiang, X.S., Qi, L.H., Luo, J., Huang, H., Zhou, J.M.: Research on accurate droplet generation for micro-droplet deposition manufacture. Int. J. Adv. Manuf. Technol. 49(5–8), 535–541 (2010). https://doi.org/10.1007/s00170-009-2403-2

    Article  Google Scholar 

  21. Kȩsy, A., Kotliński, J.: Mechanical properties of parts produced by using polymer jetting technology. Arch. Civil Mech. Eng. 10(3), 37 (2010). https://doi.org/10.1016/s1644-9665(12)60135-6

    Article  Google Scholar 

  22. Lee, T.M., Kang, T.G., Yang, J.S., Jo, J., Kim, K.Y., Choi, B.O., Kim, D.S.: Drop-on-demand solder droplet jetting system for fabricating microstructure. IEEE Trans. Electron. Packag. Manuf. 31(3), 202–210 (2008). https://doi.org/10.1109/TEPM.2008.926285

    Article  Google Scholar 

  23. Li, H.P., Li, H.J., Qi, L.H., Luo, J., Zuo, H.S.: Simulation on deposition and solidification processes of 7075 Al alloy droplets in 3D printing technology. Trans. Nonferrous Metals Soc. China. 24(6), 1836–1843 (2014). https://doi.org/10.1016/S1003-6326(14)63261-1

    Article  Google Scholar 

  24. Li, L., Saedan, M., Feng, W., Fuh, J.Y.H., Wong, Y.S., Loh, H.T., Thian, S.C.H., Thoroddsen, S.T., Lu, L.: Development of a multi-nozzle drop-on-demand system for multi-material dispensing. J. Mater. Process. Technol. 209(9), 4444 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.040

    Article  Google Scholar 

  25. Luo, J., Qi, L.H., Zhong, S.Y., Zhou, J.M., Li, H.J.: Printing solder droplets for micro devices packages using pneumatic drop-on-demand (DOD) technique. J. Mater. Process. Technol. 212(10), 2066–2073 (2012). https://doi.org/10.1016/j.jmatprotec.2012.05.007

    Article  Google Scholar 

  26. Luo, J., Wang, W., Xiong, W., Shen, H., Qi, L.: Formation of uniform metal traces using alternate droplet printing. Int. J. Mach. Tools Manuf. 122, 47–54 (2017). https://doi.org/10.1016/J.IJMACHTOOLS.2017.05.004

    Article  Google Scholar 

  27. Mikolajek, M., Reinheimer, T., Bohn, N., Kohler, C., Hoffmann, M.J., Binder, J.R.: Fabrication and characterization of fully inkjet printed capacitors based on ceramic/polymer composite dielectrics on flexible substrates. Sci. Rep. 9(1), 13324 (2019). https://doi.org/10.1038/s41598-019-49639-3

    Article  Google Scholar 

  28. Moqadam, S.I., Mädler, L., Ellendt, N.: A high temperature drop-on-demand droplet generator for metallic melts. Micromachines. 10 (2019). https://doi.org/10.3390/mi10070477

  29. Morrin, A., Wilbeer, F., Ngamna, O., Moulton, S.E., Killard, A.J., Wallace, G.G., Smyth, M.R.: Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles. Electrochem. Commun. 7(3), 317 (2005). https://doi.org/10.1016/j.elecom.2005.01.014

    Article  Google Scholar 

  30. Orme, M.: A novel technique of rapid solidification net- form materials synthesis. J. Mater. Eng. Perform. 2(3), 399 (1993). https://doi.org/10.1007/BF02648828

    Article  Google Scholar 

  31. Orme, M., Liu, Q., Smith, R.: Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum. Trans. 3(1), 95–103 (2000)

    Google Scholar 

  32. Perelaer, J., Smith, P.J., Mager, D., Soltman, D., Volkman, S.K., Subramanian, V., Korvink, J.G., Schubert, U.S.: Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446 (2010). https://doi.org/10.1039/c0jm00264j

    Article  Google Scholar 

  33. Priest, J.W., Smith, C., Dubois, P.: Liquid metal jetting for printing metal parts (n.d.). Retrieved June 23, 2019, from http://sffsymposium.engr.utexas.edu/Manuscripts/1997/1997-01-Priest.pdf

  34. Priya James, H., John, R., Alex, A., Anoop, K.R.: Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm. Sin. B. 4(2), 120 (2014). https://doi.org/10.1016/j.apsb.2014.02.005

    Article  Google Scholar 

  35. Rumschoettel, D., Kunzel, F., Irlinger, F., Lueth, T.C.: A novel piezoelectric printhead for high melting point liquid metals. In: 2016 Pan Pacific Microelectronics Symposium, Pan Pacific 2016 (2016). https://doi.org/10.1109/PanPacific.2016.7428392

    Chapter  Google Scholar 

  36. Ryu, J.E., Salcedo, E., Lee, H.J., Jang, S.J., Jang, E.Y., Al Yassi, H., Baek, D., Choi, D., Lee, E.: Material models and finite analysis of additively printed polymer composites. J. Compos. Mater. 53(3), 361 (2019). https://doi.org/10.1177/0021998318785672

    Article  Google Scholar 

  37. Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., Glogauer, M.: Biodegradable materials for bone repair and tissue engineering applications. Materials. 8(9), 5744 (2015). https://doi.org/10.3390/ma8095273

    Article  Google Scholar 

  38. Simonelli, M., Aboulkhair, N., Rasa, M., East, M., Tuck, C., Wildman, R., Salomons, O., Hague, R.: Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Addit. Manuf. 30, 100930 (2019). https://doi.org/10.1016/J.ADDMA.2019.100930

    Article  Google Scholar 

  39. Smith, P.J., Stringer, J.: Applications in inkjet printing. In: Fundamentals of Inkjet Printing (2015). https://doi.org/10.1002/9783527684724.ch15

    Chapter  Google Scholar 

  40. Sukhotskiy, V., Karampelas, I.H., Garg, G., Verma, A., Tong, M., Vader, S., Vader, Z., Furlani, E.P.: Magnetohydrodynamic drop-on-demand liquid metal 3D printing. www.comsol.com (2017)

  41. Suter, M., Weingärtner, E., Wegener, K.: MHD printhead for additive manufacturing of metals. Procedia CIRP. 2(1), 102–106 (2012). https://doi.org/10.1016/j.procir.2012.05.049

    Article  Google Scholar 

  42. Thirumangalath, S.C., Vader, S., Vader, Z.: Liquid metal 3D printing: a magnetohydrodynamic approach. In: A. Shvets, A. Drobotov, I. Gushin, A. Avdeev, Izvestia VSTU, vol. 9, Issue 204, (2017) http://www.sme.org/uploadedFiles/Membership/Members-Only_Content/Chandran-Thirumangalath-411654.pdf

  43. Vu, I.Q., Bass, L.B., Williams, C.B., Dillard, D.A.: Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing. Addit. Manuf. 22, 447–461 (2018). https://doi.org/10.1016/j.addma.2018.05.036

    Article  Google Scholar 

  44. Weng, B., Shepherd, R.L., Crowley, K., Killard, A.J., Wallace, G.G.: Printing conducting polymers. Analyst. 135(11), 2745–3012 (2010). https://doi.org/10.1039/c0an00302f

    Article  Google Scholar 

  45. Wilson, P., Lekakou, C., Watts, J.F.: A comparative assessment of surface microstructure and electrical conductivity dependence on co-solvent addition in spin coated and inkjet printed poly(3,4-ethylenedioxythiophene):polystyrene sulphonate (PEDOT:PSS). Org. Electron. 13(3), 409 (2012). https://doi.org/10.1016/j.orgel.2011.11.011

    Article  Google Scholar 

  46. Yamaguchi, K., Sakai, K., Yamanaka, T., Hirayama, T.: Generation of three-dimensional micro structure using metal jet. Precis. Eng. 24(1), 2–8 (1999). https://doi.org/10.1016/S0141-6359(99)00015-X

    Article  Google Scholar 

  47. Yi, H., Qi, L., Luo, J., Zhang, D., Li, H., Hou, X.: Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int. J. Mach. Tools Manuf. 130–131(August), 1–11 (2018). https://doi.org/10.1016/j.ijmachtools.2018.03.006

    Article  Google Scholar 

  48. Yin, Z.P., Huang, Y.A., Bu, N.B., Wang, X.M., Xiong, Y.L.: Inkjet printing for flexible electronics: materials, processes and equipments. Chin. Sci. Bull. 55(30), 3383 (2010). https://doi.org/10.1007/s11434-010-3251-y

    Article  Google Scholar 

  49. Yokoyama, Y., Endo, K., Iwasaki, T., Fukumoto, H.: Variable-size solder droplets by a molten-solder ejection method. J. Microelectromech. Syst. 18(2), 316 (2009). https://doi.org/10.1109/JMEMS.2008.2011154

    Article  Google Scholar 

  50. Zhang, F., Tuck, C., Hague, R., He, Y., Saleh, E., Li, Y., Sturgess, C., Wildman, R.: Inkjet printing of polyimide insulators for the 3D printing of dielectric materials for microelectronic applications. J. Appl. Polym. Sci. 133(18) (2016). https://doi.org/10.1002/app.43361

  51. Zhong, S., Qi, L., Luo, J., Zuo, H., Hou, X., Li, H.: Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J. Mater. Process. Technol. 214(12), 3089–3097 (2014). https://doi.org/10.1016/J.JMATPROTEC.2014.07.012

    Article  Google Scholar 

  52. Zuo, H., Li, H., Qi, L., Zhong, S.: Influence of interfacial bonding between metal droplets on tensile properties of 7075 aluminum billets by additive manufacturing technique. J. Mater. Sci. Technol. 32(5), 485–488 (2016). https://doi.org/10.1016/J.JMST.2016.03.004

    Article  Google Scholar 

Download references

Acknowledgments

Nesma T. Aboulkhair acknowledges the funding provided by the University of Nottingham’s Anne McLaren Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Gilani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilani, N., Foerster, A., Aboulkhair, N.T. (2023). Material Jetting. In: Pei, E., et al. Springer Handbook of Additive Manufacturing. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-20752-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20752-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20751-8

  • Online ISBN: 978-3-031-20752-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics