Skip to main content

Response Threshold Distributions to Improve Best-of-N Decisions in Minimalistic Robot Swarms

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Abstract

We aim to design algorithms that allow robot swarms to solve the best-of-n problem using as little resources as possible. Our minimalistic approach aims to create solutions suitable for simple robots with fewer memory and computational requirements than the state of the art algorithms require. While the long term goal is to implement decentralised algorithms for best-of-n decision making based on heterogeneous response thresholds, here we focus on what threshold distribution allows the swarm to best distinguish between options’ qualities, in order to select the option with the highest quality. Each robot estimates the quality of a random option and gives a binary response—accept or reject—depending on the quality being above or below its threshold. This study investigates the normal distribution of thresholds that maximises the probability that the majority of the swarm favours the best alternative. We conduct our analysis for various types of environments, by considering different options’ quality distributions and number of options. Our results form the basis to develop future decentralised algorithms for swarms of reactive binary robots able to make best-of-n decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agassounon, W., Martinoli, A.: Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002), pp. 1090–1097. ACM Press, New York, USA (2002). https://doi.org/10.1145/545056.545077

  2. Agrawal, S., Baliyarasimhuni, S.P., Reina, A.: Supplementary materials of the article “Response threshold distributions to improve best-of-n decisions in minimalistic robot swarms”. https://github.com/zorawar12/yesnounits.git

  3. Aust, T., Talamali, M.S., Dorigo, M., Hamann, H., Reina, A.: The hidden benefits of limited communication and slow sensing in collective monitoring of dynamic environments. In: Sasireka, B. (ed.) Swarm Intelligence (ANTS 2022). LNCS, vol. 13491, pp. 234–247. Springer, Cham (2022)

    Google Scholar 

  4. Castello, E., et al.: Adaptive foraging for simulated and real robotic swarms: the dynamical response threshold approach. Swarm Intell. 10(1), 1–31 (2016). https://doi.org/10.1007/s11721-015-0117-7

    Article  Google Scholar 

  5. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60, 581–588 (1973). https://doi.org/10.1093/biomet/60.3.581

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferreira, P.R., Boffo, F.S., Bazzan, A.L.C.: Using Swarm-GAP for distributed task allocation in complex scenarios. In: Jamali, N., Scerri, P., Sugawara, T. (eds.) AAMAS 2007. LNCS (LNAI), vol. 5043, pp. 107–121. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85449-4_8

    Chapter  Google Scholar 

  7. Hansen, A.: The three extreme value distributions: an introductory review. Front. Phys. 8, 604053 (2020). https://doi.org/10.3389/fphy.2020.604053

  8. Hasegawa, E., Ishii, Y., Tada, K., Kobayashi, K., Yoshimura, J.: Lazy workers are necessary for long-term sustainability in insect societies. Sci. Rep. 6(1), 20846 (2016). https://doi.org/10.1038/srep20846

    Article  Google Scholar 

  9. Hasegawa, E., et al.: Nature of collective decision-making by simple yes/no decision units. Sci. Rep. 7, 14436 (2017). https://doi.org/10.1038/s41598-017-14626-z

    Article  Google Scholar 

  10. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3, 643–663 (1975). https://doi.org/10.1214/aop/1176996306

    Article  MathSciNet  MATH  Google Scholar 

  11. Jafferis, N.T., Helbling, E.F., Karpelson, M., Wood, R.J.: Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570(7762), 491–495 (2019). https://doi.org/10.1038/s41586-019-1322-0

    Article  Google Scholar 

  12. Kanakia, A., Klingner, J., Correll, N.: A response threshold sigmoid function model for swarm robot collaboration. In: Chong, N.-Y., Cho, Y.-J. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 112, pp. 193–206. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55879-8_14

    Chapter  Google Scholar 

  13. Krieger, M.J., Billeter, J.B.: The call of duty: self-organised task allocation in a population of up to twelve mobile robots. Robot. Auton. Syst. 30(1–2), 65–84 (2000). https://doi.org/10.1016/S0921-8890(99)00065-2

    Article  Google Scholar 

  14. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: Kinematic self-replication in reconfigurable organisms. Proc. Natl. Acad. Sci. 118(49), e2112672118 (2021). https://doi.org/10.1073/pnas.2112672118

    Article  Google Scholar 

  15. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst. 1(1), 4–25 (2006). https://doi.org/10.1145/1152934.1152936

    Article  Google Scholar 

  16. Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization: emergent task allocation in a swarm of foraging robots. Adapt. Behav. 15(3), 289–305 (2007). https://doi.org/10.1177/1059712307082088

    Article  Google Scholar 

  17. Marshall, J.A.R., Brown, G., Radford, A.N.: Individual confidence-weighting and group decision-making. Trends Ecol. Evol. 32(9), 636–645 (2017). https://doi.org/10.1016/j.tree.2017.06.004

    Article  Google Scholar 

  18. Masuda, N., O’Shea-Wheller, T.A., Doran, C., Franks, N.R.: Computational model of collective nest selection by ants with heterogeneous acceptance thresholds. R. Soc. Open Sci. 2(6), 140533 (2015). https://doi.org/10.1098/rsos.140533

    Article  Google Scholar 

  19. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-robot systems: the best-of-n problem. IEEE/ASME Trans. Mechatron. 14(2), 240–251 (2009). https://doi.org/10.1109/TMECH.2009.2014370

    Article  Google Scholar 

  20. Parker, C.A.C., Zhang, H.: Biologically inspired collective comparisons by robotic swarms. Int. J. Robot. Res. 30(5), 524–535 (2011). https://doi.org/10.1177/0278364910397621

    Article  Google Scholar 

  21. Redner, S.: Reality-inspired voter models: a mini-review. Comptes Rendus Phys. 20(4), 275–292 (2019). https://doi.org/10.1016/j.crhy.2019.05.004

    Article  Google Scholar 

  22. Reina, A., Ferrante, E., Valentini, G.: Collective decision-making in living and artificial systems: editorial. Swarm Intell. 15(1), 1–6 (2021). https://doi.org/10.1007/s11721-021-00195-5

    Article  Google Scholar 

  23. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015). https://doi.org/10.1371/journal.pone.0140950

    Article  Google Scholar 

  24. Robinson, E.J.H., Franks, N.R., Ellis, S., Okuda, S., Marshall, J.A.R.: A simple threshold rule is sufficient to explain sophisticated collective decision-making. PLoS ONE 6(5), e19981 (2011). https://doi.org/10.1371/journal.pone.0019981

    Article  Google Scholar 

  25. Sasaki, T., Pratt, S.C.: Emergence of group rationality from irrational individuals. Behav. Ecol. 22(2), 276–281 (2011). https://doi.org/10.1093/beheco/arq198

    Article  Google Scholar 

  26. Scheidler, A., Merkle, D., Middendorf, M.: Stability and performance of ant queue inspired task partitioning methods. Theory Biosci. 127(2), 149–161 (2008). https://doi.org/10.1007/s12064-008-0033-0

    Article  Google Scholar 

  27. Seeley, T.D.: Social foraging in honey bees: how nectar foragers assess their colony’s nutritional status. Behav. Ecol. Sociobiol. 24(3), 181–199 (1989). https://doi.org/10.1007/BF00292101

    Article  Google Scholar 

  28. Talamali, M.S., Marshall, J.A.R., Bose, T., Reina, A.: Improving collective decision accuracy via time-varying cross-inhibition. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9652–9659 (2019). https://doi.org/10.1109/ICRA.2019.8794284

  29. Talamali, M.S., Saha, A., Marshall, J.A.R., Reina, A.: When less is more: robot swarms adapt better to changes with constrained communication. Sci. Robot. 6(56), eabf1416 (2021). https://doi.org/10.1126/scirobotics.abf1416

  30. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017). https://doi.org/10.3389/frobt.2017.00009

  31. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016). https://doi.org/10.1007/s10458-015-9323-3

    Article  Google Scholar 

  32. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: the weighted voter model. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014, pp. 45–52. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2014)

    Google Scholar 

  33. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  34. Weidenmüller, A.: The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behav. Ecol. 15(1), 120–128 (2004). https://doi.org/10.1093/beheco/arg101

    Article  MathSciNet  Google Scholar 

  35. Yamamoto, T., Hasegawa, E.: Response threshold variance as a basis of collective rationality. R. Soc. Open Sci. 4(4), 170097 (2017). https://doi.org/10.1098/rsos.170097

    Article  Google Scholar 

  36. Yasa, I.C., Ceylan, H., Bozuyuk, U., Wild, A.M., Sitti, M.: Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci. Robot. 5(43), eaaz3867 (2020). https://doi.org/10.1126/scirobotics.aaz3867

  37. Zakir, R., Dorigo, M., Reina, A.: Robot swarms break decision deadlocks in collective perception through cross-inhibition. In: Sasireka, B. (ed.) Swarm Intelligence (ANTS 2022). LNCS, vol. 13491, pp. 209–221. Springer, Cham (2022)

    Google Scholar 

Download references

Acknowledgements

S. A. acknowledges full support from IISER Bhopal. A. R. acknowledges support from F.R.S.-FNRS, of which he is a Chargé de Recherches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swadhin Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, S., Baliyarasimhuni, S.P., Reina, A. (2022). Response Threshold Distributions to Improve Best-of-N Decisions in Minimalistic Robot Swarms. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics