Skip to main content

Invariant Feature Learning for Generalized Long-Tailed Classification

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13684))

Included in the following conference series:

Abstract

Existing long-tailed classification (LT) methods only focus on tackling the class-wise imbalance that head classes have more samples than tail classes, but overlook the attribute-wise imbalance. In fact, even if the class is balanced, samples within each class may still be long-tailed due to the varying attributes. Note that the latter is fundamentally more ubiquitous and challenging than the former because attributes are not just implicit for most datasets, but also combinatorially complex, thus prohibitively expensive to be balanced. Therefore, we introduce a novel research problem: Generalized Long-Tailed classification (GLT), to jointly consider both kinds of imbalances. By “generalized”, we mean that a GLT method should naturally solve the traditional LT, but not vice versa. Not surprisingly, we find that most class-wise LT methods degenerate in our proposed two benchmarks: ImageNet-GLT and MSCOCO-GLT. We argue that it is because they over-emphasize the adjustment of class distribution while neglecting to learn attribute-invariant features. To this end, we propose an Invariant Feature Learning (IFL) method as the first strong baseline for GLT. IFL first discovers environments with divergent intra-class distributions from the imperfect predictions, and then learns invariant features across them. Promisingly, as an improved feature backbone, IFL boosts all the LT line-up: one/two-stage re-balance, augmentation, and ensemble. Codes and benchmarks are available on Github: https://github.com/KaihuaTang/Generalized-Long-Tailed-Benchmarks.pytorch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, the attribute represents all the factors causing the intra-class variations, including object-level attributes (colors, textures, postures, etc.) and image-level attributes (lighting, contexts, etc).

  2. 2.

    In this paper, \(z_c\) and \(z_a\) stand for all class-specific components and variant attributes, respectively, but we use a single variable to represent them in the following examples, e.g, \(z_c=feather\) and \(z_a=brown\), for simplicity.

  3. 3.

    We follow the center loss [59] to implement \(C_{y_i^e}\) as the moving average for efficiency.

References

  1. Agarwal, V., Shetty, R., Fritz, M.: Towards causal VQA: revealing and reducing spurious correlations by invariant and covariant semantic editing. In: CVPR (2020)

    Google Scholar 

  2. Arjovsky, M.: Out of distribution generalization in machine learning. Ph.D. thesis, New York University (2020)

    Google Scholar 

  3. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  4. Besserve, M., Mehrjou, A., Sun, R., Schölkopf, B.: Counterfactuals uncover the modular structure of deep generative models. In: ICLR (2020)

    Google Scholar 

  5. Cai, J., Wang, Y., Hwang, J.N.: Ace: ally complementary experts for solving long-tailed recognition in one-shot. In: ICCV (2021)

    Google Scholar 

  6. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. NeurIPS (2019)

    Google Scholar 

  7. Carlini, N., et al.: On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705 (2019)

  8. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: Adversarial attacks and defences: a survey. arXiv preprint arXiv:1810.00069 (2018)

  9. Creager, E., Jacobsen, J.H., Zemel, R.: Environment inference for invariant learning. In: ICML (2021)

    Google Scholar 

  10. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR Workshops (2020)

    Google Scholar 

  11. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR (2019)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  13. He, Y.Y., Wu, J., Wei, X.S.: Distilling virtual examples for long-tailed recognition. In: ICCV (2021)

    Google Scholar 

  14. Hinton, G., Roweis, S.T.: Stochastic neighbor embedding. In: NeurIPS (2002)

    Google Scholar 

  15. Hong, Y., Han, S., Choi, K., Seo, S., Kim, B., Chang, B.: Disentangling label distribution for long-tailed visual recognition. In: CVPR (2021)

    Google Scholar 

  16. Hu, X., Jiang, Y., Tang, K., Chen, J., Miao, C., Zhang, H.: Learning to segment the tail. In: CVPR (2020)

    Google Scholar 

  17. Idrissi, B.Y., Arjovsky, M., Pezeshki, M., Lopez-Paz, D.: Simple data balancing achieves competitive worst-group-accuracy. In: Conference on Causal Learning and Reasoning (2022)

    Google Scholar 

  18. Jamal, M.A., Brown, M., Yang, M.H., Wang, L., Gong, B.: Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In: CVPR (2020)

    Google Scholar 

  19. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)

    Google Scholar 

  20. Kim, J., Jeong, J., Shin, J.: M2m: imbalanced classification via major-to-minor translation. In: CVPR (2020)

    Google Scholar 

  21. Koh, P.W., et al.: Wilds: a benchmark of in-the-wild distribution shifts. In: ICML (2021)

    Google Scholar 

  22. Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (rex). In: ICML (2021)

    Google Scholar 

  23. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)

    Google Scholar 

  24. Li, T., Wang, L., Wu, G.: Self supervision to distillation for long-tailed visual recognition. In: ICCV (2021)

    Google Scholar 

  25. Li, Y., et al.: Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In: CVPR (2020)

    Google Scholar 

  26. Li, Z., Xu, C.: Discover the unknown biased attribute of an image classifier. arXiv preprint arXiv:2104.14556 (2021)

  27. Liang, W., Zou, J.: Metashift: a dataset of datasets for evaluating contextual distribution shifts and training conflicts. In: ICLR (2022)

    Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  29. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  30. Liu, J., Sun, Y., Han, C., Dou, Z., Li, W.: Deep representation learning on long-tailed data: a learnable embedding augmentation perspective. In: CVPR (2020)

    Google Scholar 

  31. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR (2019)

    Google Scholar 

  32. Locatello, F., et al.: Challenging common assumptions in the unsupervised learning of disentangled representations. In: ICML. PMLR (2019)

    Google Scholar 

  33. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. In: ICLR (2020)

    Google Scholar 

  34. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  35. Nam, J., Cha, H., Ahn, S., Lee, J., Shin, J.: Learning from failure: de-biasing classifier from biased classifier. NeurIPS 33, 20673–20684 (2020)

    Google Scholar 

  36. News, B.: Facebook apology as AI labels black men ‘primates’ (2021), https://www.bbc.com/news/technology-58462511

  37. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  38. Patterson, G., Hays, J.: COCO attributes: attributes for people, animals, and objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 85–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_6

    Chapter  Google Scholar 

  39. Powers, D.M.: Applications and explanations of zipf’s law. In: New Methods in Language Processing and Computational Natural Language Learning (1998)

    Google Scholar 

  40. Reed, W.J.: The pareto, zipf and other power laws. Econ. Lett. 74(1), 15–19 (2001)

    Article  MATH  Google Scholar 

  41. Ren, J., et al.: Balanced meta-softmax for long-tailed visual recognition. NeurIPS (2020)

    Google Scholar 

  42. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  43. Santurkar, S., Tsipras, D., Madry, A.: Breeds: benchmarks for subpopulation shift. In: ICLR (2021)

    Google Scholar 

  44. Sohoni, N., Dunnmon, J., Angus, G., Gu, A., Ré, C.: No subclass left behind: fine-grained robustness in coarse-grained classification problems. NeurIPS (2020)

    Google Scholar 

  45. Srivastava, M., Hashimoto, T., Liang, P.: Robustness to spurious correlations via human annotations. In: ICML (2020)

    Google Scholar 

  46. Stone, J.V.: Bayes’ Rule: a Tutorial Introduction to Bayesian Analysis. Sebtel Press (2013)

    Google Scholar 

  47. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  48. Tan, J., Lu, X., Zhang, G., Yin, C., Li, Q.: Equalization loss v2: a new gradient balance approach for long-tailed object detection. In: CVPR (2021)

    Google Scholar 

  49. Tan, J., et al.: Equalization loss for long-tailed object recognition. In: CVPR (2020)

    Google Scholar 

  50. Tang, K., Huang, J., Zhang, H.: Long-tailed classification by keeping the good and removing the bad momentum causal effect. NeurIPS (2020)

    Google Scholar 

  51. van Horn, G., et al.: The inaturalist species classification and detection dataset. In: CVPR (2018)

    Google Scholar 

  52. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  53. Wang, T., Yue, Z., Huang, J., Sun, Q., Zhang, H.: Self-supervised learning disentangled group representation as feature. NeurIPS (2021)

    Google Scholar 

  54. Wang, T., et al.: The devil is in classification: a simple framework for long-tail instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 728–744. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_43

    Chapter  Google Scholar 

  55. Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. TIST (2019)

    Google Scholar 

  56. Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.X.: Long-tailed recognition by routing diverse distribution-aware experts. ICLR (2020)

    Google Scholar 

  57. Wang, Y., Yao, Q.: Few-shot learning: a survey. arxiv (2019)

    Google Scholar 

  58. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: NeurIPS (2017)

    Google Scholar 

  59. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  60. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. (TIST) 11(5), 1–46 (2020)

    Article  Google Scholar 

  61. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  62. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)

    Google Scholar 

  63. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning for face recognition with under-represented data. In: CVPR (2019)

    Google Scholar 

  64. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: CVPR (2016)

    Google Scholar 

  65. Yue, Z., Sun, Q., Hua, X.S., Zhang, H.: Transporting causal mechanisms for unsupervised domain adaptation. In: ICCV (2021)

    Google Scholar 

  66. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  67. Zhang, Y., Hooi, B., Hong, L., Feng, J.: Test-agnostic long-tailed recognition by test-time aggregating diverse experts with self-supervision. In: ICCV (2021)

    Google Scholar 

  68. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. arXiv preprint arXiv:2110.04596 (2021)

  69. Zhao, B., et al.: Robin: a benchmark for robustness to individual nuisances in real-world out-of-distribution shifts. In: ECCV (2022)

    Google Scholar 

  70. Zhao, H., Des Combes, R.T., Zhang, K., Gordon, G.: On learning invariant representations for domain adaptation. In: ICML (2019)

    Google Scholar 

  71. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: CVPR (2020)

    Google Scholar 

  72. Zhu, B., Niu, Y., Hua, X.S., Zhang, H.: Cross-domain empirical risk minimization for unbiased long-tailed classification. In: AAAI (2022)

    Google Scholar 

  73. Zhu, B., Niu, Y., Hua, X.S., Zhang, H.: Cross-domain empirical risk minimization for unbiased long-tailed classification. AAAI (2022)

    Google Scholar 

  74. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: ECCV (2018)

    Google Scholar 

Download references

Acknowledgements

This project is partially supported by Alibaba-NTU Singapore Joint Research Institute (JRI), and AI Singapore (AISG) Research Programme. We also feel grateful to the computational resources provided by Damo Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaihua Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2115 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, K., Tao, M., Qi, J., Liu, Z., Zhang, H. (2022). Invariant Feature Learning for Generalized Long-Tailed Classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13684. Springer, Cham. https://doi.org/10.1007/978-3-031-20053-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20053-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20052-6

  • Online ISBN: 978-3-031-20053-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics