Skip to main content

Learning Visibility for Robust Dense Human Body Estimation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13661))

Abstract

Estimating 3D human pose and shape from 2D images is a crucial yet challenging task. While prior methods with model-based representations can perform reasonably well on whole-body images, they often fail when parts of the body are occluded or outside the frame. Moreover, these results usually do not faithfully capture the human silhouettes due to their limited representation power of deformable models (e.g., representing only the naked body). An alternative approach is to estimate dense vertices of a predefined template body in the image space. Such representations are effective in localizing vertices within an image but cannot handle out-of-frame body parts. In this work, we learn dense human body estimation that is robust to partial observations. We explicitly model the visibility of human joints and vertices in the x, y, and z axes separately. The visibility in x and y axes help distinguishing out-of-frame cases, and the visibility in depth axis corresponds to occlusions (either self-occlusions or occlusions by other objects). We obtain pseudo ground-truths of visibility labels from dense UV correspondences and train a neural network to predict visibility along with 3D coordinates. We show that visibility can serve as 1) an additional signal to resolve depth ordering ambiguities of self-occluded vertices and 2) a regularization term when fitting a human body model to the predictions. Extensive experiments on multiple 3D human datasets demonstrate that visibility modeling significantly improves the accuracy of human body estimation, especially for partial-body cases. Our project page with code is at: https://github.com/chhankyao/visdb.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2Shape: detailed full human body geometry from a single image. In: ICCV (2019)

    Google Scholar 

  2. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  3. Choi, H., Moon, G., Chang, J.Y., Lee, K.M.: Beyond static features for temporally consistent 3D human pose and shape from a video. In: CVPR, pp. 1964–1973 (2021)

    Google Scholar 

  4. Choi, H., Moon, G., Lee, K.M.: Pose2Mesh: graph convolutional network for 3D human pose and mesh recovery from a 2D human pose. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 769–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_45

    Chapter  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  6. Dwivedi, S.K., Athanasiou, N., Kocabas, M., Black, M.J.: Learning to regress bodies from images using differentiable semantic rendering. In: ICCV, pp. 11250–11259 (2021)

    Google Scholar 

  7. Guler, R.A., Kokkinos, I.: Holopose: holistic 3D human reconstruction in-the-wild. In: CVPR, pp. 10884–10894 (2019)

    Google Scholar 

  8. Güler, R.A., Neverova, N., Kokkinos, I.: Densepose: dense human pose estimation in the wild. In: CVPR, pp. 7297–7306 (2018)

    Google Scholar 

  9. Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: ICCV, pp. 2282–2292 (2019)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale datasets and predictive methods for 3D human sensing in natural environments. PAMI 36(7), 1325–1339 (2013)

    Google Scholar 

  13. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR, pp. 7122–7131 (2018)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: CVPR, pp. 5253–5263 (2020)

    Google Scholar 

  16. Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: PARE: part attention regressor for 3D human body estimation. In: ICCV, pp. 11127–11137 (2021)

    Google Scholar 

  17. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: ICCV, pp. 2252–2261 (2019)

    Google Scholar 

  18. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: CVPR, pp. 4501–4510 (2019)

    Google Scholar 

  19. Kolotouros, N., Pavlakos, G., Jayaraman, D., Daniilidis, K.: Probabilistic modeling for human mesh recovery. In: ICCV (2021)

    Google Scholar 

  20. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3D and 2D human representations. In: CVPR, pp. 6050–6059 (2017)

    Google Scholar 

  21. Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: CVPR, pp. 1954–1963 (2021)

    Google Scholar 

  22. Lin, K., Wang, L., Liu, Z.: Mesh graphormer. In: ICCV (2021)

    Google Scholar 

  23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. TOG 34(6), 1–16 (2015)

    Article  Google Scholar 

  25. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  26. Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 3DV, pp. 120–130 (2018)

    Google Scholar 

  27. Moon, G., Chang, J.Y., Lee, K.M.: V2V-posenet: voxel-to-voxel prediction network for accurate 3D hand and human pose estimation from a single depth map. In: CVPR, pp. 5079–5088 (2018)

    Google Scholar 

  28. Moon, G., Chang, J.Y., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: ICCV, pp. 10133–10142 (2019)

    Google Scholar 

  29. Moon, G., Lee, K.M.: I2L-MeshNet: image-to-Lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 752–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_44

    Chapter  Google Scholar 

  30. Muller, L., Osman, A.A., Tang, S., Huang, C.H.P., Black, M.J.: On self-contact and human pose. In: CVPR, pp. 9990–9999 (2021)

    Google Scholar 

  31. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: unifying deep learning and model based human pose and shape estimation. In: 3DV, pp. 484–494 (2018)

    Google Scholar 

  32. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. NeurIPS 32, 8026–8037 (2019)

    Google Scholar 

  33. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR, pp. 10975–10985 (2019)

    Google Scholar 

  34. Pavlakos, G., Kolotouros, N., Daniilidis, K.: Texturepose: supervising human mesh estimation with texture consistency. In: ICCV, pp. 803–812 (2019)

    Google Scholar 

  35. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: CVPR, pp. 459–468 (2018)

    Google Scholar 

  36. Rockwell, C., Fouhey, D.F.: Full-body awareness from partial observations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 522–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_31

    Chapter  Google Scholar 

  37. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu: pixel-aligned implicit function for high-resolution clothed human digitization. In: ICCV, pp. 2304–2314 (2019)

    Google Scholar 

  38. Saito, S., Simon, T., Saragih, J., Joo, H.: PifuHD: multi-level pixel-aligned implicit function for high-resolution 3d human digitization. In: CVPR, pp. 84–93 (2020)

    Google Scholar 

  39. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  40. Sun, Y., Bao, Q., Liu, W., Fu, Y., Black, M.J., Mei, T.: Monocular, one-stage, regression of multiple 3D people. In: ICCV, pp. 11179–11188 (2021)

    Google Scholar 

  41. Varol, G., et al.: BodyNet: volumetric inference of 3D human body shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 20–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_2

    Chapter  Google Scholar 

  42. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  43. Xu, Y., Zhu, S.C., Tung, T.: DenseRAC: joint 3D pose and shape estimation by dense render-and-compare. In: ICCV, pp. 7760–7770 (2019)

    Google Scholar 

  44. Zeng, W., Ouyang, W., Luo, P., Liu, W., Wang, X.: 3D human mesh regression with dense correspondence. In: CVPR, pp. 7054–7063 (2020)

    Google Scholar 

  45. Zhang, T., Huang, B., Wang, Y.: Object-occluded human shape and pose estimation from a single color image. In: CVPR, pp. 7376–7385 (2020)

    Google Scholar 

  46. Zhou, X., Zhu, M., Pavlakos, G., Leonardos, S., Derpanis, K.G., Daniilidis, K.: MonoCap: monocular human motion capture using a CNN coupled with a geometric prior. PAMI 41(4), 901–914 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Han Yao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11472 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, CH., Yang, J., Ceylan, D., Zhou, Y., Zhou, Y., Yang, MH. (2022). Learning Visibility for Robust Dense Human Body Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19769-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19768-0

  • Online ISBN: 978-3-031-19769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics