Skip to main content

Crop Classification Using Deep Learning: A Quick Comparative Study of Modern Approaches

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2022)

Abstract

Automatic crop classification using new technologies is recognized as one of the most important assets in today’s smart farming improvement. Investments in technology and innovation are key issues for shaping agricultural productivity as well as the inclusiveness and sustainability of the global agricultural transformation. Digital image processing (DIP) has been widely adopted in this field, by merging Unmanned Aerial Vehicle (UAV) based remote sensing and deep learning (DL) as a powerful tool for crop classification. Despite the wide range of alternatives, the proper selection of a DL approach is still an open and challenging issue. In this work, we carry out an exhaustive performance evaluation of three remarkable and lightweight DL approaches, namely: Visual Geometry Group (VGG), Residual Neural Network (ResNet) and Inception V3, tested on high resolution agriculture crop images dataset. Experimental results show that InceptionV3 outperforms VGG and ResNet in terms of precision (0,92), accuracy (0,97), recall (0,91), AUC (0,98), PCR (0,97), and F1 (0,91).

Supported by SDAS Research Group (https://www.sdas-group.com).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  2. Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Bouguettaya, A., Zarzour, H., Kechida, A., Taberkit, A.M.: Deep learning techniques to classify agricultural crops through UAV imagery: a review. Neural Comput. Appl. 34, 9511–9536 (2022). https://doi.org/10.1007/s00521-022-07104-9

  4. Chew, R., et al.: Deep neural networks and transfer learning for food crop identification in UAV images. Drones 4(1), 7 (2020)

    Article  Google Scholar 

  5. Chollet, F., et al.: Keras. https://keras.io (2015)

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Gadiraju, K.K., Vatsavai, R.R.: Comparative analysis of deep transfer learning performance on crop classification. In: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pp. 1–8 (2020)

    Google Scholar 

  8. Gupta, K., Rani, R., Bahia, N.K.: Plant-seedling classification using transfer learning-based deep convolutional neural networks. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 11(4), 25–40 (2020)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hosseinzadeh, M., Khoramdel, J., Borhani, Y., Najafi, E.: A new fuzzy logic based learning rate scheduling method for crop classification with convolutional neural network. In: 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA), pp. 1–5. IEEE (2022)

    Google Scholar 

  11. Jaiswal, A.: Agriculture crop images (2021)

    Google Scholar 

  12. Kordon, A.K.: Applying data science: How to create value with artificial intelligence. Springer Nature (2020)

    Google Scholar 

  13. Lu, B., Dao, P.D., Liu, J., He, Y., Shang, J.: Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12(16), 2659 (2020)

    Article  Google Scholar 

  14. Moreno-Revelo, M.Y., Guachi-Guachi, L., Gómez-Mendoza, J.B., Revelo-Fuelagán, J., Peluffo-Ordóñez, D.H.: Enhanced convolutional-neural-network architecture for crop classification. Appl. Sci. 11(9), 4292 (2021)

    Article  Google Scholar 

  15. Moreno-Revelo, M.Y., Gómez-Mendoza, J.B., Peluffo-Ordoñez, D.H.: Satellite-image-based crop identification using unsupervised machine learning techniques: preliminary results. Revista Ibérica de Sistemas e Tecnologias de Informação E22, 337–348 (2019)

    Google Scholar 

  16. Nowakowski, A., et al.: Crop type mapping by using transfer learning. Int. J. Appl. Earth Obs. Geoinf. 98, 102313 (2021)

    Google Scholar 

  17. Pech-May, F., Aquino-Santos, R., Rios-Toledo, G., Posadas-Durán, J.P.F.: Mapping of land cover with optical images, supervised algorithms, and google earth engine. Sensors 22(13), 4729 (2022)

    Article  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  20. Srivastava, S., Divekar, A.V., Anilkumar, C., Naik, I., Kulkarni, V., Pattabiraman, V.: Comparative analysis of deep learning image detection algorithms. J. Big Data 8(1), 1–27 (2021). https://doi.org/10.1186/s40537-021-00434-w

    Article  Google Scholar 

  21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  22. Tammina, S.: Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. (IJSRP) 9(10), 143–150 (2019)

    Google Scholar 

  23. Wang, Y., Gao, F., Gao, G., Zhao, J., Wang, X., Zhang, R.: Production and cultivated area variation in cereal, rice, wheat and maize in china (1998–2016). Agronomy 9(5), 222 (2019)

    Article  Google Scholar 

  24. Zhao, H., Chen, Z., Jiang, H., Jing, W., Sun, L., Feng, M.: Evaluation of three deep learning models for early crop classification using sentinel-1a imagery time series-a case study in zhanjiang, china. Remote Sens. 11(22), 2673 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by SDAS Research Group (https://sdas-group.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hind Raki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raki, H. et al. (2022). Crop Classification Using Deep Learning: A Quick Comparative Study of Modern Approaches. In: Florez, H., Gomez, H. (eds) Applied Informatics. ICAI 2022. Communications in Computer and Information Science, vol 1643. Springer, Cham. https://doi.org/10.1007/978-3-031-19647-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19647-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19646-1

  • Online ISBN: 978-3-031-19647-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics