Skip to main content

Linearization, Model Reduction and Reachability in Nonlinear odes

  • Conference paper
  • First Online:
Reachability Problems (RP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13608))

Included in the following conference series:

Abstract

In the analysis of nonlinear ordinary differential equations (odes), linear and Taylor approximations are fundamental tools. Such approximations are generally accurate only in a local sense, that is near a given expansion point in space or time. We study conditions and methods to compute linear approximations of nonlinear odes that are accurate also non locally. Relying on Carleman linearization and Krylov projection, our method yields a small, hence tractable linear system that is shown to produce accurate approximate solutions, under suitable stability conditions. In the general, possibly non stable case, we provide an algorithm that, given an initial set and a finite time horizon, builds a tight overapproximation of the reachable states at specified times. Experiments conducted with a proof-of-concept implementation have given encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This can be weakened to analyticity in some open set containing all the trajectories \(x(t;x_0)\) for \(x_0\in \varOmega \).

  2. 2.

    For an introduction to Krylov spaces, see e.g. [27].

  3. 3.

    An explicit expression for \(y_1\) is:

    \(y_1(t;y_0)= -1/3\,{\textrm{e}^{t/2}} ( \sqrt{3} ( { x_1}-2\,{ x_2} ) \sin ( \frac{1}{2}\,t\sqrt{3} ) -3\,{ x_1}\,\cos ( \frac{1}{2}\,t\sqrt{3} ) ) \).

  4. 4.

    That is, all eigenvalues of \(H_m\) have a nonnegative real part and every imaginary eigenvalue, if any, has geometric multiplicity equal to the algebraic one. See e.g. [16, pp. 135–136].

  5. 5.

    The method can be extended without much difficulty to more sophisticated and scalable types of sets, like zonotopes.

  6. 6.

    These are useful in case one wants a flowpipe encapsulating the flow \(x(t;x_0)\) for all t’s in a given interval, not only at specified time points \(t_k\)’s.

  7. 7.

    More precisely: , \( b_1=(-0.11067,-0.10006,0.20011,0.22134)^T\) and \(\eta _1=(-0.11065,-0.10002,0.20015,0.22142)^T\).

  8. 8.

    Code and examples available at https://github.com/Luisa-unifi/CKR.

  9. 9.

    It should be noted, though, that it makes little sense to compare a proof-of-concept implementation with highly optimized tools in this respect. At any rate, all execution times are below 100 seconds.

References

  1. Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (HSCC 2013), pp. 173–182. ACM (2013). https://doi.org/10.1145/2461328.2461358

  2. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems, pp. 120–151 (2015)

    Google Scholar 

  3. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability analysis. Ann. Rev. Control Robot. Auton. Syst. 4(1) (2021). https://doi.org/10.1146/annurev-control-071420-081941. hal-03048155

  4. Amini, A., Sun, Q., Motee, N.: Error bounds for Carleman linearization of general nonlinear systems. In: 2021 Proceedings of the Conference on Control and Its Applications. SIAM (2021)

    Google Scholar 

  5. Bellman, R., Richardson, J.M.: On some questions arising in the approximate solution of nonlinear differential equations. Q. Appl. Math. 20(4), 333–339 (1963)

    Article  MathSciNet  Google Scholar 

  6. Boreale, M.: Algorithms for exact and approximate linear abstractions of polynomial continuous systems. In: Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (Part of CPS Week), HSCC 2018. ACM (2018)

    Google Scholar 

  7. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: Real-Time Systems Symposium (RTSS), pp. 183–192. IEEE (2012)

    Google Scholar 

  8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  9. Chen, X., Abraham, E., Sankaranarayanan, S.: FLOW* benchmarks. https://flowstar.org/benchmarks/

  10. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Autom. Control 48(1), 64–75 (2003)

    Article  MathSciNet  Google Scholar 

  11. Forets, M., Pouly, A.: Explicit error bounds for Carleman linearization. arXiv:1711.02552 (2017)

  12. Forets, M., Schilling, C.: Reachability of weakly nonlinear systems using Carleman linearization. In: Bell, P.C., Totzke, P., Potapov, I. (eds.) RP 2021. LNCS, vol. 13035, pp. 85–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89716-1_6

    Chapter  Google Scholar 

  13. Goldsztejn, A., Neumaier, A.: On the exponentiation of interval matrices (2009). hal-00411330v1

    Google Scholar 

  14. Goubault, E., Jourdan, J.-H., Putot, S., Sankaranarayanan, S.: Finding non-polynomial positive invariants and Lyapunov functions for polynomial systems through Darboux polynomials. In: ACC 2014, pp. 3571–3578 (2014)

    Google Scholar 

  15. Jungers, R.M., Tabuada, P.: Non-local linearization of nonlinear differential equations via polyflows. In: 2019 American Control Conference (ACC), pp. 1–6 (2019). https://doi.org/10.23919/ACC.2019.8814337

  16. Khalil, H.: Nonlinear Systems, vol. 3/e. Prentice-Hall (2002)

    Google Scholar 

  17. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_17

    Chapter  Google Scholar 

  18. Kowalski, K., Steeb, W.-H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific (1991)

    Google Scholar 

  19. Makino, K., Berz, M.: Rigorous integration of flows and ODEs using Taylor models. In: Proceedings of Symbolic-Numeric Computation, pp. 79–84. ACM (2009). https://doi.org/10.1145/1577190.1577206

  20. Mauroy, A., Mezic, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61(11), 3356–3369 (2016). https://doi.org/10.1109/TAC.2016.2518918

    Article  MathSciNet  MATH  Google Scholar 

  21. Mauroy, A., Mezic, I., Susuki, Y. (eds.): The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35713-9

    Book  MATH  Google Scholar 

  22. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50, 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  23. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-physical system models. Formal Methods Syst. Des. 49, 33–74 (2016). https://doi.org/10.1007/s10703-016-0241-z

    Article  MATH  Google Scholar 

  24. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.: SOSTOOLS and its control applications. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control. LNCIS, vol. 312, pp. 273–292. Springer, Heidelberg (2005). https://doi.org/10.1007/10997703_14

    Chapter  MATH  Google Scholar 

  26. Prajna, S.: Barrier certificates for nonlinear model validation. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 3, pp. 2884–2889 (2003). https://doi.org/10.1109/CDC.2003.1273063

  27. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)

    Google Scholar 

  28. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced application domains (beyond software). Formal Methods Syst. Des. 54, 275–335 (2019). https://doi.org/10.1007/s10703-019-00337-w

    Article  Google Scholar 

  29. Sankaranarayanan, S.: Automatic abstraction of non-linear systems using change of bases transformations. In: HSCC 2011, pp. 143–152 (2011)

    Google Scholar 

  30. Sankaranarayanan, S.: Change-of-bases abstractions for non-linear systems. CoRR abs/1204.4347 (2012)

    Google Scholar 

  31. van der Pol, B.: The nonlinear theory of electric oscillations. Proc. Inst. Radio Eng. 22, 1051–1086 (1934)

    MATH  Google Scholar 

  32. Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_40

    Chapter  MATH  Google Scholar 

  33. Xue, B., Fränzle, M., Zhan, N.: Under-approximating reach sets for polynomial continuous systems. In: Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (Part of CPS Week), HSCC 2018, pp. 51–60. ACM (2018). https://doi.org/10.1145/3178126.3178133

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Boreale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boreale, M., Collodi, L. (2022). Linearization, Model Reduction and Reachability in Nonlinear odes. In: Lin, A.W., Zetzsche, G., Potapov, I. (eds) Reachability Problems. RP 2022. Lecture Notes in Computer Science, vol 13608. Springer, Cham. https://doi.org/10.1007/978-3-031-19135-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19135-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19134-3

  • Online ISBN: 978-3-031-19135-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics