Skip to main content
  • 358 Accesses

Abstract

The term unified is used to describe the unification of universal laws of motion of Newton and laws of thermodynamics ab initio level. As we discussed in earlier chapters, Newton’s laws do not account for energy loss or degradation. They only govern what happens to a system in the initial moment a load is applied to a brand-new structure. However, the laws of thermodynamics control what happens after the initial moment over time. Historically, continuum mechanics is based on the laws of Newton only, and phenomenological test data fit empirical models that are supposed to satisfy thermodynamics’ laws introduce energy loss, dissipation, and degradation. In the next section, we will discuss the earlier work on using thermodynamics in continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Translators’ footnote: The ambiguous symbol “l” [used by Boltzmann] for [natural] logarithm in the original text has been replaced throughout by “ln .”

  2. 2.

    Translators’ footnote: The original text reads as “maximized but should mean minimized” [because Boltzmann’s objective is to maximize P].

  3. 3.

    Boltzmann approximates ln x! by \( \left[x\ \ln x-x+\frac{1}{2}\ln \left(2\pi \right)\right] \) rather than \( \left[\left(x+\frac{1}{2}\right)\ln x-x+\frac{1}{2}\ln \left(2\pi \right)\right] \) as is now usual. For x ≫ 30,the relative difference is small.

  4. 4.

    Cardano’s formula.

  5. 5.

    Wien. Ber. (1875) 72:427–457 (Wiss. Abhand. Vol. II, reprint 32).

  6. 6.

    The quantity χ called “Kraftfunktion” or “Ergal” by Boltzmann is translated as potential energy.

  7. 7.

    Wien. Ber. (1875) 72:427–457.

  8. 8.

    Translators note: Altitude and azimuth?

  9. 9.

    Translator note: Here V should appear in the denominator, cf the equation after (4.165).

  10. 10.

    O. Lummer and E. Pringsheim, Transactions of the German Physical Society 2 (1900), p. 163.

  11. 11.

    H. Rubens and F. Kurlbaum, Proceedings of the Imperial Academy of Science, Berlin, October 25, 1900, p. 929.

  12. 12.

    H. Beckmann, Inaugural dissertation, Tübingen 1898. See also H. Rubens, Weid. Ann. 69 (1899), p. 582.

  13. 13.

    M. Planck, Ann. d. Phys. 1 (1900), p. 719.

  14. 14.

    Compare with Eq. (4.205).

  15. 15.

    M. Planck, loc. cit., pp. 730 ff.

  16. 16.

    Moreover one should compare the critiques previously made of this theorem by W. Wien (Report of the Paris Congress 2, 1900, p. 40) and by O. Lummer (loc. cit., 1900, p. 92).

  17. 17.

    L. Boltzmann, Proceedings of the Imperial Academy of Science, Vienna, (II) 76 (1877), p. 428.

  18. 18.

    Joh. v. Kries, The Principles of Probability Calculation (Freiburg, 1886), p. 36.

  19. 19.

    W. Wien, Proceedings of the Imperial Academy of Science, Berlin, February 9, 1893, p. 55.

  20. 20.

    M. Thiesen, Transactions of the German Physical Society 2 (1900), p. 66.

  21. 21.

    Perhaps one should speak more appropriately of a “white” radiation, to generalize what one already understands by total white light.

  22. 22.

    M. Planck, Ann. d. Phys. 1 (1900), p. 99.

  23. 23.

    F. Kurlbaum, Wied. Ann. 65 (1898), p. 759.

  24. 24.

    O. Lummer and E. Pringsheim, Transactions of the German Physical Society 2 (1900), p. 176.

References

  • Amiri, M., & Khonsari, M. M. (2012). On the role of entropy generation in processes involving fatigue. Entropy, 14(1), 24–31.

    ADS  MATH  Google Scholar 

  • Basaran, C., & Chandaroy, R. (2002). Thermomechanical analysis of solder joints under thermal and vibrational loading. Transactions of the ASME: Journal of Electronic Packaging, 124(1), 60–67.

    Google Scholar 

  • Basaran, C., & Lin, M. (2007a). Electromigration induced strain field simulations for nanoelectronics lead-free solder joints. International Journal of Solids and Structures, 44, 4909–4924.

    MATH  Google Scholar 

  • Basaran, C., & Lin, M. (2007b). Damage mechanics of electromigration in microelectronics copper interconnects. International Journal of Materials and Structural Integrity, 1(1/2/3), 16–39.

    Google Scholar 

  • Basaran, C., & Lin, M. (2008). Damage mechanics of electromigration induced failure. Mechanics of Materials, 40, 66–79.

    Google Scholar 

  • Basaran, C., & Nie, S. (2004). An irreversible thermodynamic theory for damage mechanics of solids. International Journal of Damage Mechanics, 13(3), 205–224.

    Google Scholar 

  • Basaran, C., & Nie, S. (2007). A thermodynamics based damage mechanics model for particulate composites. International Journal of Solids and Structures, 44, 1099–1114.

    MATH  Google Scholar 

  • Basaran, C., & Tang, H. (2002). Implementation of a thermodynamic framework for damage mechanics of solder interconnects in microelectronic packaging. International Journal of Damage Mechanics, 11(1), 87–108.

    Google Scholar 

  • Basaran, C., & Yan, C. Y. (1998). A thermodynamic framework for damage mechanics of solder joints. Transactions of the ASME: Journal of Electronic Packaging, 120, 379–384.

    Google Scholar 

  • Basaran, C., Lin, M., & Ye, H. (2003). A thermodynamic model for electrical current induced damage. International Journal of Solids and Structures, 40(26), 7315–7327.

    MATH  Google Scholar 

  • Basaran, C., Zhao, Y., Tang, H., & Gomez, J. (2005). A damage mechanics based unified constitutive model for solder alloys. Transactions of the ASME: Journal of Electronic Packaging, 127(3), 208–214.

    Google Scholar 

  • Basaran, C., Li, S., & Abdulhamid, M. (2008a). Thermomigration induced degradation in solder alloys. Journal of Applied Physics, 103, 123520.

    ADS  Google Scholar 

  • Basaran, C., Nie, S., & Hutchins, C. (2008b). Time-dependent behavior of a particle filled composite PMMA/ATH at elevated temperatures. Journal of Composite Materials, 42(19), 2003–2025.

    ADS  Google Scholar 

  • Bazant, Z. P. (1972). Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. Nuclear Engineering Structures and Design, 20, 477–505.

    Google Scholar 

  • Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320(1), 18–36.

    ADS  Google Scholar 

  • Bin Jamal, M. N., Kumar, A., Rao, C. L., & Basaran, C. (2020). Low cycle fatigue life prediction using unified mechanics theory in Ti-6Al-4V alloys. Entropy, 22(1), 24.

    ADS  Google Scholar 

  • Bin Jamal, M. N., Lee, H. W., Lakshmana Rao, C., & Basaran, C. (2021). Dynamic equilibrium equations in unified mechanics theory. Applied Mechanics, 2, 63–80.

    Google Scholar 

  • Callen, H. B. (1985). Thermodynamics and an Introduction to Thermostatistics, Wiley.

    Google Scholar 

  • Chalmers, M. (2016). Second law of thermodynamics “broken”. New Scientist. Retrieved 2016-02-09.

    Google Scholar 

  • Chudnovsky, A. (1973). Fracture of solids. In Scientific papers on Elasticity and plasticity, N9 (pp. 3–43) (Russian).

    Google Scholar 

  • Chudnovsky, A. (1984). Statistics and thermodynamics of fracture. International Journal of Engineering Science, 22(8–10), 989–997.

    Google Scholar 

  • Cuadras, A., Crisóstomo, J., Ovejas, V. J., & Quilez, M. (2015). Irreversible entropy model for damage diagnosis in resistors. Journal of Applied Physics, 118, 165103.

    ADS  Google Scholar 

  • Cuadras, A., Romero, R., & Ovejas, V. J. (2016). Entropy characterization of overstressed capacitors for lifetime prediction. Journal of Power Sources, 336, 272–278.

    ADS  Google Scholar 

  • Cuadras, A., Yao, J., & Quilez, M. (2017). Determination of LEDs degradation with entropy generation rate. Journal of Applied Physics, 122, 145702.

    ADS  Google Scholar 

  • David Halliday and Robert Resnick (1966) Physics, John Wiley & Sons

    Google Scholar 

  • De Groot, S. R., & Mazur, P. (1962a). Nonequilibrium thermodynamics. North-Holland.

    MATH  Google Scholar 

  • Dehoff, R. T., “Thermodynamics in Materials Science,” 2nd Edition, Mc Graw-Hill, New York, 1993.

    Google Scholar 

  • Ehrenfest, P., Trkal, V. Deduction of the dissociation-equilibrium from the theory of quanta and a calculation of the chemical constant based on this. Ann. Phys., 1921, 65, 609–628.

    Google Scholar 

  • Evans, D. J., Cohen, E. G. D., & Morriss, G. P. (1993). Probability of second law violations in shearing steady states. Physical Review Letters, 71(15), 2401–2404.

    ADS  MATH  Google Scholar 

  • Feeny, B., & Liang, J. (1996). A decrement method for the simultaneous estimation of coulomb and viscous friction. Journal of Sound and Vibration, 195, 149–154.

    ADS  Google Scholar 

  • Gerstner, E. Second law broken. Nature (2002). https://doi.org/10.1038/news020722-2

    Google Scholar 

  • Getling, A. V. (1998). Rayleigh–Bénard convection: Structures and dynamics. World Scientific. ISBN 978-981-02-2657-2.

    MATH  Google Scholar 

  • Glansdorff, P., & Prigogine, I. (1971a). Thermodynamic theory of structure, stability and fluctuations. Wiley.

    MATH  Google Scholar 

  • Glansdorff, P., & Prigogine, I. (1971b). Thermodynamics theory of structure, stability, and fluctuations. Wiley-Interscience.

    MATH  Google Scholar 

  • Gomez, J., & Basaran, C. (2005). A thermodynamics based damage mechanics constitutive model for low cycle fatigue analysis of microelectronics solder joints incorporating size effect. International Journal of Solids and Structures, 42(13), 3744–3772.

    MATH  Google Scholar 

  • Gomez, J., & Basaran, C. (2006). Damage mechanics constitutive model for Pb/Sn solder joints incorporating nonlinear kinematic hardening and rate dependent effects using a return mapping integration algorithm. Mechanics of Materials, 38, 585–598.

    Google Scholar 

  • Gomez, J., Lin, M., & Basaran, C. (2006). Damage mechanics modeling of concurrent thermal and vibration loading on electronics packaging. Multidiscipline Modeling in Materials and Structures, 2(3), 309–326.

    Google Scholar 

  • Gunel, E. M., & Basaran, C. (2010). Stress whitening quantification in thermoformed of mineral filled acrylics. ASME Journal of Engineering Materials and Technology, 132, 031002-11.

    Google Scholar 

  • Gunel, E. M., & Basaran, C. (2011a). Damage characterization in non-isothermal stretching of acrylics: Part I theory. Mechanics of Materials, 43(12), 979–991.

    Google Scholar 

  • Gunel, E. M., & Basaran, C. (2011b). Damage characterization in non-isothermal stretching of acrylics: Part II experimental validation. Mechanics of Materials, 43(12), 992–1012.

    Google Scholar 

  • Guo, Q., Zaõri, F., & Guo, X. (2018). An intrinsic dissipation model for high-cycle fatigue life prediction. International Journal of Mechanical Sciences, 140, 163–171.

    Google Scholar 

  • Haddad, W. M. (2017). Thermodynamics: The unique universal science. Entropy, 19, 621.

    ADS  Google Scholar 

  • Haddad, W. M. (2019). A dynamical systems theory of thermodynamics. Princeton University Press.

    MATH  Google Scholar 

  • Haddad, W. M., Chellaboina, V., & Nersesov, S. G. (2005). Thermodynamics: A dynamical systems approach. Princeton University Press.

    MATH  Google Scholar 

  • Halliday, D. and Resnick R., Physics, John Wiley & Sons, Inc. 1986, New York, NY.

    Google Scholar 

  • Hsiao, C.-C., & Liang, B.-H. (2018). The generated entropy monitored by pyroelectric sensors. Sensors, 18, 3320.

    ADS  Google Scholar 

  • Imanian, A., & Modarres, M. (2015). A thermodynamic entropy approach to reliability assessment with applications to corrosion fatigue. Entropy, 17(10), 6995–7020.

    ADS  Google Scholar 

  • Imanian, A., & Modarres, M. (2018). A thermodynamic entropy-based damage assessment with applications to prognosis and health management. Structural Health Monitoring, 17(2), 240–254.

    Google Scholar 

  • Jang, J. Y., & Khonsari, M. M. (2018). On the evaluation of fracture fatigue entropy. Theoretical and Applied Fracture Mechanics, 96, 351–361.

    Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physics Review, 106, 620–615.

    ADS  MathSciNet  MATH  Google Scholar 

  • Jaynes, E. (1992). The Gibbs paradox. In C. Smith, G. Erickson, & P. Neudorfer (Eds.), Maximum entropy and Bayesian methods (pp. 1–22). Kluwer Academic Publishers.

    Google Scholar 

  • Kestin, J., & Rice, J. R. (1970). A critical review of thermodynamics (E. B. Stuart et al., Eds., p. 275). Mono Book Corp.

    Google Scholar 

  • Kijalbaev, D., & Chudnovsky, A. (1970). On fracture of deformable solids. Journal of Applied Mechanics and Technical Physics, 3, 105.

    Google Scholar 

  • Klamecki, B. E. (1980a). A thermodynamic model of friction. Wear, 63, 113–120.

    Google Scholar 

  • Klamecki, B. E. (1980b). Wear – An entropy production model. Wear, 58, 325–330.

    Google Scholar 

  • Klamecki, B. E. (1984). An entropy-based model of plastic deformation energy dissipation in sliding. Wear, 96, 319–329.

    Google Scholar 

  • Koschmieder, E. L. (1993). Bénard cells and Taylor vortices. Cambridge University Press. ISBN 0521-40204-2.

    MATH  Google Scholar 

  • Lebowitz, J. (1993). Boltzmann’s entropy and time’s arrow. Physics Today, 46, 32–38.

    Google Scholar 

  • Li, S., & Basaran, C. (2009). A computational damage mechanics model for thermomigration. Mechanics of Materials, 41(3), 271–278.

    Google Scholar 

  • Li, S., Abdulhamid, M., & Basaran, C. (2008). Simulating damage mechanics of electromigration and thermomigration. Simulation: Transactions of the Society for Modeling and Simulation International, 84(8/9), 391–401.

    Google Scholar 

  • Liakat, M., & Khonsari, M. M. (2015). Entropic characterization of metal fatigue with stress concentration. International Journal of Fatigue, 70, 223–234.

    Google Scholar 

  • Liang, J.-W. (2005). Identifying Coulomb and viscous damping from free-vibration acceleration decrements. Journal of Sound and Vibrations, 282, 1208–1220.

    ADS  Google Scholar 

  • Lin, M., & Basaran, C. (2005). Electromigration induced stress analysis using fully coupled mechanical-diffusion equations with nonlinear material properties. Computational Materials Science, 34(1), 82–98.

    Google Scholar 

  • Naderi, M., Amiri, M., & Khonsari, M. M. (2010). On the thermodynamic entropy of fatigue fracture. Proceedings of the Royal Society A, 466, 423–438.

    ADS  MATH  Google Scholar 

  • Onsager, L. (1931). Reciprocal relations in irreversible processes, I. Physical Review, 37, 405–426.

    ADS  MATH  Google Scholar 

  • Onsager, L. (1932). Reciprocal relations in irreversible processes, II. Physical Review, 38, 2265–2279.

    ADS  MATH  Google Scholar 

  • Osara, J. A., & Bryant, M. D. (2019a). Thermodynamics of fatigue: Degradation-entropy generation methodology for system and process characterization and failure analysis. Entropy, 21(7), 685.

    ADS  MathSciNet  Google Scholar 

  • Osara, J. A., & Bryant, M. D. (2019b). A thermodynamic model for lithium-ion battery degradation: Application of the degradation-entropy generation theorem. Inventions, 4, 0023.

    Google Scholar 

  • Ostoja-Starzewski, M. (2016). Second law violations, continuum mechanics, and permeability. Continuum Mechanics and Thermodynamics, 28(1–2), 489–501.

    ADS  MathSciNet  MATH  Google Scholar 

  • Ostoja-Starzewski, M., & Raghavan, B. V. (2016). Continuum mechanics versus violations of the second law of thermodynamics. Journal of Thermal Stresses, 39(6), 734–749.

    Google Scholar 

  • Planck, M. (1901). “Ueber das Gesetz der Energieverteilung im Normalspektrum”. Annalen der Physik. 309 (3): 553–563. Bibcode:1901AnP...309..553P. doi:10.1002/andp.19013090310

    Google Scholar 

  • Prigogine, I. (1955). Introduction to thermodynamics of irreversible processes. Charles C. Thomas Publisher.

    MATH  Google Scholar 

  • Prigogine, I. (1957). The molecular theory of solutions. North-Holland Publishing Company.

    MATH  Google Scholar 

  • Prigogine, I. (1961). Introduction to thermodynamics of irreversible processes (2nd ed.). Interscience. OCLC 219682909.

    MATH  Google Scholar 

  • Prigogine, I. (1968). Introduction to thermodynamics of irreversible processes. Wiley-Interscience.

    MATH  Google Scholar 

  • Prigogine, I., & Defay, R. (1954). Chemical thermodynamics. Longmans Green and Co..

    Google Scholar 

  • Prigogine, I., & Herman, R. (1971). Kinetic theory of vehicular traffic. American Elsevier. ISBN 0-444-00082-8.

    MATH  Google Scholar 

  • Prigogine, I., & Nicolis, G. (1977). Self-organization in non-equilibrium systems. Wiley. ISBN 0-471-02401-5.

    MATH  Google Scholar 

  • Rice, J. R. (1971). Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. Journal of the Mechanics and Physics of Solids, 19, 433–455.

    ADS  MATH  Google Scholar 

  • Rice, J. R. (1977). Thermodynamics of the quasi-static growth of Griffith cracks. Journal of the Mechanics and Physics of Solids, 26, 61–78.

    ADS  MATH  Google Scholar 

  • Richard Swalin (1972). Thermodynamics of Solids, John Wiley & Sons, New York NY

    Google Scholar 

  • Rivas, Á., & Martin-Delgado, M. A. (2017). Topological heat transport and symmetry-protected boson currents. Scientific Reports, 7(1), 6350. https://doi.org/10.1038/s41598-017-06722-x

    Article  ADS  Google Scholar 

  • Rivli, R. S. (1981). Some comments on the endochronic theory of plasticity. International Journal of Solids and Structures, 17(2), 231–248.

    Google Scholar 

  • Searles, D. J., & Evans, D. J. (2004). Fluctuations relations for nonequilibrium systems. Australian Journal of Chemistry, 57(12), 1119–1123. https://doi.org/10.1071/ch04115

    Article  Google Scholar 

  • Sharp, K.; Matschinsky, F. Translation of Ludwig Boltzmann’s Paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp 373–435 (Wien. Ber. 1877, 76:373–435). Reprinted in Wiss. Abhandlungen, Vol. II, reprint 42, p. 164–223, Barth, Leipzig, 1909. Entropy 2015, 17, 1971–2009. https://doi.org/10.3390/e17041971

    Google Scholar 

  • Sherbakov, S. S., & Sosnovskiy, L. A. (2010). Mechanics of tribo-fatigue systems (p. 407). BSU.

    Google Scholar 

  • Sosnovskiy, L. A. (1987). Statistical mechanics of fatigue damage (p. 288). Nauka i Tekhnika. (In Russian).

    Google Scholar 

  • Sosnovskiy, L. A. (1999). Tribo-fatigue: The dialectics of life (2nd ed., p. 116). BelSUT Press. (In Russian).

    Google Scholar 

  • Sosnovskiy, L. A. (2004). L-risk (Mechanothermodynamics of irreversible damages) (p. 317). BelSUT Press. (In Russian).

    Google Scholar 

  • Sosnovskiy, L. A. (2005). Tribo-fatigue: Wear-fatigue damage and its prediction (Foundations of engineering mechanics) (p. 424). Springer.

    Google Scholar 

  • Sosnovskiy, L. A. (2007). Mechanics of wear-fatigue damage (p. 434). BelSUT Press.

    Google Scholar 

  • Sosnovskiy, L. A. (2009). Life field and golden proportions. Nauka i Innovatsii, 79, 26–33. (In Russian).

    Google Scholar 

  • Sosnovskiy, L. A., & Sherbakov, S. S. (2012). Mechanothermodynamical system and its behavior. Continuum Mechanics and Thermodynamics, 24, 239–256.

    ADS  MATH  Google Scholar 

  • Sosnovskiy, L. A., & Sherbakov, S. S. (2015). Mechanothermodynamics. Springer.

    Google Scholar 

  • Sosnovskiy, L. A., & Sherbakov, S. S. (2016). Mechanothermodynamic entropy and analysis of damage state of complex systems. Entropy, 18(7), 268.

    ADS  MathSciNet  Google Scholar 

  • Sosnovskiy, L. A., & Sherbakov, S. S. (2017). A model of mechanothermodynamic entropy in tribology. Entropy, 19, 115.

    ADS  MathSciNet  Google Scholar 

  • Sosnovskiy, L. A., & Sherbakov, S. S. (2019). On the development of mechanothermodynamics as a new branch of physics. Entropy, 21(12), 1188.

    ADS  MathSciNet  Google Scholar 

  • Suhir, E. (2019). Failure oriented accelerated testing (FOAT) Boltzmann Arrnhenius Zhurkov equation (BAZ) and their application in aerospace microelectronics and photonics reliability engineering. International Journal of Aeronautical Science and Aerospace Research, 6(3), 185–191.

    Google Scholar 

  • Swendsen, R. H. (2006). Statistical mechanics of colloids and Boltzmann’s definition of the entropy. American Journal of Physics, 74, 187–190.

    ADS  MathSciNet  MATH  Google Scholar 

  • Tang, H., & Basaran, C. (2003). A damage mechanics based fatigue life prediction model. Transactions of the ASME: Journal of Electronic Packaging, 125(1), 120–125.

    Google Scholar 

  • Temfack, T., & Basaran, C. (2015). Experimental verification of a thermodynamic fatigue life prediction model. Materials Science and Technology, 31(13), 1627–1632.

    ADS  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237(641), 37–72. Bibcode:1952RSPTB.237...37T. https://doi.org/10.1098/rstb.1952.0012.%20JSTOR%2092463

    ADS  MathSciNet  MATH  Google Scholar 

  • Valanis, K. C. (1971). Irreversibility and existence of entropy. International Journal of Non-Linear Mechanicsm, 6(3), 337–360.

    ADS  MATH  Google Scholar 

  • Van Kampen, N. G. (1984). The Gibbs paradox. In W. E. Parry (Ed.), Essays in theoretical physics in honour of Dirk ter Haar (pp. 303–312). Pergamon.

    Google Scholar 

  • Valanis and Komkov (1980). Irreversible thermodynamics from the point of view of internal variable theory /A Lagrangian formulation, Archiwum Mechaniki Stosowanej, vol. 32, no. 1, 1980, p. 33–58.

    Google Scholar 

  • Wang, G. M., Sevick, E. M., Mittag, E., Searles, D.J. & Evans, D.J. Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales. Physical Review Letters 89, 050601, (2002)

    Google Scholar 

  • Wang, J., & Yao, Y. (2017). An entropy based low-cycle fatigue life prediction model for solder materials. Entropy, 19, 503.

    Google Scholar 

  • Wang, J., & Yao, Y. (2019). An entropy-based failure prediction model for the creep and fatigue of metallic materials. Entropy, 21(11), 1104.

    ADS  MathSciNet  Google Scholar 

  • Wang, T., Samal, S. K., Lim, S. K., & Shi, Y. (2019). Entropy production based full-chip fatigue analysis: From theory to mobile applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(1), 84–95.

    Google Scholar 

  • Whaley, P. W. (1983). A thermodynamic approach to metal fatigue. In Proceedings of ASME. International conference on advances in life prediction methods, Albany, NY, pp. 18–21.

    Google Scholar 

  • Yao, W., & Basaran, C. (2012). Electromigration analysis of solder joints under ac load: A mean time to failure model. Journal of Applied Physics, 111(6), 063703.

    ADS  Google Scholar 

  • Yao, W., & Basaran, C. (2013a). Computational damage mechanics of electromigration and thermomigration. Journal of Applied Physics, 114, 103708.

    ADS  Google Scholar 

  • Yao, W., & Basaran, C. (2013b). Electrical pulse induced impedance and material degradation in IC chip packaging. Electronic Materials Letters, 9(5), 565–568.

    ADS  Google Scholar 

  • Yao, W., & Basaran, C. (2013c). Electromigration damage mechanics of lead-free solder joints under pulsed DC loading: A computational model. Computational Materials Science, 71, 76–88.

    Google Scholar 

  • Young, C., & Subbarayan, G. (2019a). Maximum entropy models for fatigue damage in metals with application to low-cycle fatigue of aluminum 2024-T351. Entropy, 21(10), 967.

    ADS  Google Scholar 

  • Young, C., & Subbarayan, G. (2019b). Maximum entropy models for fatigue damage aluminum 2024-T351. Entropy, 21, xx.

    Google Scholar 

  • Yun, H., & Modarres, M. (2019). Measures of entropy to characterize fatigue damage in metallic materials. Entropy, 21(8), 804.

    ADS  Google Scholar 

  • Zhang, M.-H., Shen, X.-H., He, L., & Zhang, K.-S. (2018). Application of differential entropy in characterizing the deformation inhomogeneity and life prediction of low-cycle fatigue of metals. Materials, 11, 1917.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basaran, C. (2022). Unified Mechanics Theory. In: Introduction to Unified Mechanics Theory with Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-18621-9_4

Download citation

Publish with us

Policies and ethics