Skip to main content

Diagnostics of the Stability State of the Bugrinsky Bridge by Acoustic Noise Method

  • Chapter
  • First Online:
Processes in GeoMedia—Volume VI

Abstract

The results of field experiments on assessing the stability of bridges using the example of the Bugrinsky Bridge (Novosibirsk) based on acoustic noise recorded on the surface are presented. The possibility of using the frequency-amplitude distribution to determine the anomalous zones caused by a large increase in amplitude is shown. Bridge stability was also determined by compression-expansion models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ngeljaratan, L., Moustafa, M.A.: Structural health monitoring and seismic response assessment of bridge structures using target-tracking digital image correlation. Eng. Struct. 213, ISSN 0141-0296 (2020)

    Google Scholar 

  2. Wang, Y., Tumbeva, M.D., Thrall, A.P., Zoli, T.P.: Pressure‐activated adhesive tape pattern for monitoring the structural condition of steel bridges via digital image correlation. Struct. Control. Health Monit. (2019)

    Google Scholar 

  3. Xiao, P., Wu, Z.Y., Christenson, R., et al.: Development of video analytics with template matching methods for using camera as sensor and application to highway bridge structural health monitoring. Civil. Struct. Health Monit. 10, 405–424 (2020)

    Article  Google Scholar 

  4. Alani, A.M., Tosti, F., Ciampoli, L.B., Gagliardi, V., Benedetto, A.: An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies. NDT & E Int. 115, ISSN 0963-8695 (2020)

    Google Scholar 

  5. Selvakumaran, S., et al.: Combined InSAR and terrestrial structural monitoring of bridges. IEEE Trans. Geosci. Remote Sens. 58(10), 7141–7153 (2020)

    Article  Google Scholar 

  6. Kaloop, M.R., Hwang, W.S., Elbeltagi, E., Beshr, A., Hu, J.W.: Evaluation of Dorim-Goh bridge using ambient trucks through short-period structural health monitoring system. Struct. Eng. Mech. 69(3), 347–359 (2019)

    Google Scholar 

  7. Kaloop, M.R., Kim, K.H., Elbeltagi, E., et al.: Service-life evaluation of existing bridges subjected to static and moving trucks using structural health monitoring system: case study. KSCE Civ. Eng. 24, 1593–1606 (2020)

    Article  Google Scholar 

  8. Kolesnikov, Yu.I., Fedin, K.V.: Detecting underground cavities using microtremor data: physical modelling and field experiment. Geophys. Prospect. 66(2), 342–353 (2018)

    Article  Google Scholar 

  9. Fedin, K.V., Gricenko, A.A.: Diagnostika sostoyaniya ustojchivosti kolonn gazovyh skvazhin metodom stoyachih voln. Processy v geosredah. 1, 1039–1046 (2021)

    Google Scholar 

  10. Fedin, K.V., Kolesnikov, Y.U.I., Ngomajezve, L.: Opredelenie pustot pod betonnymi plitami krepleniya verhovyh otkosov plotiny Novosibirskoj GES po akusticheskim shumam. Processy v geosredah. 4(26), 970–975 (2020)

    Google Scholar 

  11. Eponeshnikova, L., Dergach, P., Duchkov, A.: Reducing the cost of microseismic monitoring for ensuring safety in mining. In: 82nd EAGE Annual Conference and Exhibition Workshop Programme (Amsterdam, The Netherlands, 8–11 Dec 2020): Abstracts. Amsterdam, pp. 1–5 (2020)

    Google Scholar 

  12. Hajkin, S.E.: Fizicheskie osnovy mekhaniki. M.: Nauka, p. 752 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Fedin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fedin, K.V., Gritsenko, A.A., Gromyko, P.V. (2023). Diagnostics of the Stability State of the Bugrinsky Bridge by Acoustic Noise Method. In: Chaplina, T. (eds) Processes in GeoMedia—Volume VI. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-031-16575-7_4

Download citation

Publish with us

Policies and ethics