Skip to main content

Flax Breeding

  • Chapter
  • First Online:
The Flax Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Cultivated flax (Linum usitatissimum L.) is an annual, self-pollinated diploid (2n = 2x = 30) species with a genome size of 370 Mb. The crop is classified as flaxseed or linseed for oil, food and feed use, and as fiber flax for fiber use. The two types evolved into different morphotypes from the same origin based on selection preference either for the use of oil or fiber. In the last 60 years, the harvesting area of both oilseed and fiber types declined by 61.3% and 87.5%, respectively. However, crop yield potential increased by 112% and 733% for oilseed and fiber flax, respectively, that kept the similar production worldwide. Genetic diversity facilitates breeders to develop new cultivars with improved agronomics and biotic and abiotic stress tolerance. Traditional crop breeding has been under use for hundreds of years and is still commonly used today. Currently, molecular breeding, especially marker-assisted selection approach, is regarded as an important tool for crop improvement. Recent invention of the molecular-based genomic prediction method predicts desired phenotypes from unknown genotypes using genotypic data with more efficient and greater accuracy than before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaby RG, Peterson GW, Merriwether DA, Fu YB (2005) Evidence of the domestication history of flax (Linum usitatissimum L.) from genetic diversity of the sad2 locus. Theoretical and Applied Genetics 112(1):58–65. https://doi.org/10.1007/s00122-005-0103-3. Epub 2005 Oct 8. PMID: 16215731

  • Alsaleh A, Baloch FS, Sesiz U, Nadeem MA, Hatipoğlu R, Erbakan M, Özkan H, Hussain S, Alsaleh A, Baloch FS, Sesiz U, Nadeem MA, Hatipoğlu R, Erbakan M, Özkan H, Hussain S (2022) Marker-assisted selection and validation of DNA markers associated with cadmium content in durum wheat germplasm. Crop Pasture Sci. https://doi.org/10.1071/CP21484

    Article  Google Scholar 

  • Ayad WG, Hodgkin T, Jaradat A, Rao VR (1997) Molecular genetic techniques for plant genetic resources. Report of an IPGRI workshop, 9–11 October 1995. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Balter M (2009) Clothes make the (Hu) man. Science 325(5946):1329. https://doi.org/10.1126/science.325_1329a

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MA, Lobina IT, Dilla-Ermita CJ et al (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11

    PubMed  PubMed Central  Google Scholar 

  • Becker HC, Bernardo R (1998) A model for marker-assisted selection among single crosses with multiple genetic markers. Theor Appl Genet 97(3):473–478. https://doi.org/10.1007/S001220050919

    Article  Google Scholar 

  • Bergmann R, Friedt W (1997) Haploidy and related biotechnological methods in linseed (Linum usitatissimum L.). In: Jain SM, Sopory SK, Veilleux RE (eds) In Vitro haploid production in higher plants, vol 5. Kluwer Academic, Publishers, pp 1–16

    Google Scholar 

  • Bernardo R, Woodbury SP (2020) Breeding for quantitative traits in plants third edition. http://stemmapress.com

  • Ben-Sadoun S, Rincent R, Auzanneau J, Oury FX, Rolland B, Heumez E, Ravel C, Charmet G, Bouchet S (2020) Economical optimization of a breeding scheme by selective phenotyping of the calibration set in a multi-trait context: application to bread making quality. Theor Appl Genet 133(7):2197–2212. https://doi.org/10.1007/S00122-020-03590-4/FIGURES/5

    Article  CAS  PubMed  Google Scholar 

  • Bhateria S, Sood SP, Pathania A (2006) Genetic analysis of quantitative traits across environments in flax (Linum usitatissimum L.). Euphytica 150:185–194

    CAS  Google Scholar 

  • Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39(1):228–237

    CAS  Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. In: Janick J (ed) Plant Breeding Reviews, vol 13. John Wiley and Sons, Inc., New York, pp 11–87. https://doi.org/10.1002/9780470650059.ch2

  • Campanelli G, Sestili S, Acciarri N, Montemurro F, Palma D, Leteo F, Beretta M (2019) Multi-Parental advances generation inter-cross population, to develop organic tomato genotypes by participatory plant breeding. Agronomy 9:119

    Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    PubMed  Google Scholar 

  • Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, DeValk CA, Krueger KW, Lawton SB, Spiegelberg BG, Schnell JM, Neumeyer MA, Perry JS, Peterson AC, Kim B, Bergstrom L, Yang L, Barber IC, Tian F, Doebley JF (2019) TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics 213:1065–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Culbertson JO (1954) Breeding flax. Adv Agron 6:174–178

    Google Scholar 

  • Diederichsen A, Ulrich A (2009) Variability in stem fibre content and its association with other characteristics in 1177 flax (Linum usitatissimum L) genebank accessions. Ind Crop Prod 30:33–39

    CAS  Google Scholar 

  • Diederichsen A, Raney JP (2006) Seed colour, seed weight and seed oil content in Linum usitatissimum accessions held by plant gene resources of Canada. Plant Breed 125(4):372–377

    Google Scholar 

  • Diederichsen A (2001) Comparison of genetic diversity of flax (Linum usitatissimum L.) between Canadian cultivars and a world collection. Plant Breed 120(4):360–362. https://doi.org/10.1046/J.1439-0523.2001.00616.X

  • Diers BW, Specht J, Rainey KM, Cregan P, Song Q, Ramasubramanian V, Graef G, Nelson R, Schapaugh W, Wang D, Shannon G, McHale L, Kantartzi SK, Xavier A, Mian R, Stupar RM, Michno J-M, An Y-QC, Goettel W, Ward R, Fox C, Lipka AE, Hyten D, Cary T, Beavis WD (2018) Genetic architecture of soybean yield and agronomic traits. G3 8:3367–3375

    Google Scholar 

  • Dillman AC, Goar LG (1937) Flaxseed production in the far western states. Rep. Farmer’s Bulletin no. 1792. United States Department of Agriculture: Beltsville, MD

    Google Scholar 

  • Duk M, Kanapin A, Rozhmina T, Bankin M, Surkova S, Samsonova A, Samsonova M (2021) The genetic landscape of fiber flax. Front Plant Sci 12:764612. https://doi.org/10.3389/fpls.2021.764612

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert RT, Joly RJ, Neale DB (1981) Genetics of isozyme variants and linkage relationships among allozyme loci in 35 eastern white pine clones. Can J for Res 11(3):573–579

    CAS  Google Scholar 

  • Egorova TV (1996) Family Linaceae DC. ex SF Gray. Flora Vostochnoi Evropy 9:346–361

    Google Scholar 

  • El Sayed AA, Ezzat SM, Mostafa SH, Zedan SZ, Abdel-Sattar E, El Tanbouly N (2018) Inter simple sequence repeat analysis of genetic diversity and relationship in four egyptian flaxseed genotypes. Pharmacognosy Research 10(2):166

    CAS  Google Scholar 

  • Everaert I, De Riek J, De Loose M, van Waes J, van Bockstaele E (2001) Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data. Plant Varieties Seeds 14(2):69–87

    Google Scholar 

  • Falkenhagen ER (1985) Isozyme studies in provenance research of forest trees. Theor Appl Genet 69(4):335–347

    CAS  PubMed  Google Scholar 

  • Fragoso CA, Maria M, Zuoheng W, Christopher H, Lady JA, John AA, Natalia F, Luz ER, Karine L, Zhao H, Stephen LD, Mathias L (2017) Genetic architecture of a rice nested association mapping population. G3 7:1913–1926

    Google Scholar 

  • Friedt W (1993) Breeding and agronomic development of linseed and sunflower for technical markets. In: Anthony KRM, Meadley J, Röbbelen G (eds) New crops for temperate regions. Chapman and Hall, London, pp 222–234

    Google Scholar 

  • Frouin J, Labeyrie A, Boisnard A, Sacchi GA, Ahmadi N (2019) Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. PLoS ONE 14(6):e0217516. https://doi.org/10.1371/JOURNAL.PONE.0217516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu YB, Diederichsen A, Allaby RG (2012) Locus-specific view of flax domestication history. Ecol Evol 2:139–152

    PubMed  PubMed Central  Google Scholar 

  • Fu YB, Rowland GG, Duguid SD, Richards KW (2003) RAPD analysis of 54 North American flax cultivars. Crop Sci 43(4):1510–1515

    Google Scholar 

  • Gaur PM, Thudi M, Srinivasan S, Varshney RK (2013) Advances in chickpea genomics. In: Nadarajan N, Gupta DS (eds) Legumes in the Omic Era. Springer, New York, NY, USA, pp 73–94

    Google Scholar 

  • Gill KS, Yermanos DM (1967) Cytogenetic studies on the genus Linum I. Hybrids among taxa with 15 as the haploid chromosome number 1. Crop Sci 7(6):623–627

    Google Scholar 

  • Gill KS (1987) Flax. Indian council of agricultural research, New Delhi, India. 386p

    Google Scholar 

  • Green AG, Chen Y, Singh SP, Dribnenki JCP (2008) Flax. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic oilseed crops. Blackwell Publishing, Chicester, pp 199–226

    Google Scholar 

  • Hall LM, Booker H, Siloto RMP, Jhala AJ, Weselake RJ (2016) Industrial Oil crops (Chapter 6—Flax, Linum usitatissimum L.). In: McKeon TA, Hayes DG, Hildebrand DF, Weselake RJ (ed). AOCS Press, pp 157–194. https://doi.org/10.1016/B978-1-893997-98-1.00006-3

  • Hao X, Li X, Yang X, Li J (2014) Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Mol Breed 34(2):739–748. https://doi.org/10.1007/S11032-014-0071-X/TABLES/2

    Article  CAS  Google Scholar 

  • Harlan JR (1965) Possible role of weed races in evolution of cultivated plants. Euphytica 14:173–176

    Google Scholar 

  • He L, Xiao J, Rashid KY, Jia G, Li P, Yao Z, Wang X, Cloutier S, You FM (2019) Evaluation of genomic prediction for pasmo resistance in flax. Int J Mol Sci 20(2):359. https://doi.org/10.3390/IJMS20020359

    Article  PubMed  PubMed Central  Google Scholar 

  • Helbaek H (1959) Domestication of food plants in the old world. Science 130:365–372

    Google Scholar 

  • Hoque A, Fiedler JD, and Rahman M (2020) Genetic diversity analysis of a flax (Linum usitatissimum L.) global collection. BMC Genomics 21(1):1–13. https://doi.org/10.1186/S12864-020-06922-2

  • Howard R, Jarquin D (2019) Genomic prediction using canopy coverage image and genotypic information in Soybean via a hybrid model. Evol Bioinf Online 15:1176934319840026. https://doi.org/10.1177/1176934319840026

    Article  Google Scholar 

  • Hu J, Guo C, Wang B, Ye J, Liu M, Wu Z, Xiao Y, Zhang Q, Li H, King GJ, Liu K (2018) Genetic properties of a nested association mapping population constructed with semi-winter and spring oilseed rapes. Front Plant Sci 9:1740

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh BL, Ehlers JD, Huang BE, Muñoz-Amatriaín M, Lonardi S, Santos JRP et al (2018) A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J 93:1129–1142

    CAS  PubMed  Google Scholar 

  • Jarquin D, Kajiya-Kanegae H, Taishen C, Yabe S, Persa R, Yu J, Nakagawa H, Yamasaki M, Iwata H (2020) Coupling day length data and genomic prediction tools for predicting time-related traits under complex scenarios. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-70267-9

    Article  CAS  Google Scholar 

  • Juita DBZ, Kennedy EM, Mackie JC (2012) Low temperature oxidation of linseed oil: a review. Fire Sci Rev 1:3. https://doi.org/10.1186/2193-0414-1-3

    Article  CAS  Google Scholar 

  • Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake NK, Pumphrey MO, Glover K, Dubcovsky J, Talbert L, Akhunov ED (2018) The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. Plant J 95:1039–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenaschuk EO, Rowland GG (1993) Flax. In: Slinkard AE, Knott DR (eds) Harvest of gold: the history of field crop breeding in Canada. University of Saskatchewan, Saskatoon, Saskatchewan, pp 173–176

    Google Scholar 

  • Kenaschuk EO (1975) In: Harpiak JT (ed) Oilseed and pulse crops in western canada—a symposium. Western Co-operative Fertilizers, Calgary, Alberta, pp 203–221

    Google Scholar 

  • KS D, CH DR, Sinha P, HK MS, RR KR, EP, RM S (2022) Marker assisted pedigree breeding based improvement of the Indian mega variety of rice MTU1010 for resistance against bacterial blight and blast and tolerance to low soil phosphorus. PLOS ONE 17(1):e0260535. https://doi.org/10.1371/JOURNAL.PONE.0260535

  • Kumar Yadav H, Chandrawati D, Singh N, Kumar R, Kumar S, Ranade SA (2018) Agro-Morphological traits and microsatellite marker s based genetic diversity in indian genotypes of linseed (Linum usitatissimum L.). http://hdl.handle.net/123456789/3670

  • Kumari A, Paul S, Sharma V (2018) Genetic diversity analysis using RAPD and ISSR markers revealed discrete genetic makeup in relation to fibre and oil content in Linum usitatissimum L. genotypes. The Nucleus 61(1):45–53

    Google Scholar 

  • Kuhns LJ, Fretz TA (1978) Distinguishing rose cultivars by polyacrylamide gel electrophoresis. I. Extraction and storage of protein and active enzymes from rose leaves [Chemotaxonomy]. J Am Soc Hortic Sci 103(4):503–508

    Google Scholar 

  • Kvavadze E, Bar-Yosef O, Belfer-Cohen A (2009) 30,000 years old wild flax fibers—testimony for fabricating prehistoric lilen. Science 5946:1359

    Google Scholar 

  • Lan S, Zheng C, Hauck K, McCausland M, Duguid SD, Booker HM, Cloutier S, You FM (2020) Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax. Int J Mol Sci 21(5):1577. https://doi.org/10.3390/IJMS21051577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay CL, Dybing DD (1989) Linseed in oil crops of the world. In: Robbelen G, Downey RK, Ashri A (eds). McGraw Hill, NY

    Google Scholar 

  • Li J, Anja B, Viola S, Benjamin S (2016) Comparison of statistical models for nested association mapping in rapeseed (Brassica napus L.) through computer simulations. BMC Plant Biol 16:26

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110(C):77–123. https://doi.org/10.1016/B978-0-12-385531-2.00002-5

  • Lozada DN, Carter AH (2015) Accuracy of single and multi-trait genomic prediction models for grain yield in US pacific northwest winter wheat. https://doi.org/10.20900/cbgg20190012

  • Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N et al (2014) An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3 4:1603–1610

    Google Scholar 

  • Månsby E, von Díaz O, Von Bothmer R (2000) Preliminary study of genetic diversity in Swedish flax (Linum usitatissimum). Genet Resour Crop Evol 47(4):417–424

    Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53(1):58–66. https://doi.org/10.2135/CROPSCI2012.02.0112

    Article  CAS  Google Scholar 

  • McDill J, Repplinger M, Simpson BB, Kadereit JW (2009) The phylogeny of Linum and linaceae subfamily linoideae, with implications for their systematics, biogeography, and evolution of heterostyly. Syst Bot 34(2):386–405

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829. https://doi.org/10.1093/GENETICS/157.4.1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhiret WN, Heslop-Harrison JS (2018) Biodiversity in Ethiopian linseed (Linum usitatissimum L.): molecular characterization of landraces and some wild species. Genetic Resour Crop Evol 1–12

    Google Scholar 

  • Mohammadi AA, Saeidi G, Arzani A (2010) Genetic analysis of some agronomic traits in flax (Linum usitatissimum L.). Aust J Crop Sci 4:343–352

    CAS  Google Scholar 

  • Monteverde E, Gutierrez L, Blanco P, Pérez de Vida F, Rosas JE, Bonnecarrère V, Quero G, McCouch S (2019) Integrating molecular markers and environmental covariates to interpret genotype by environment interaction in rice (Oryza sativa L.) grown in subtropical areas. G3 Genes|Genomes|Genetics 9(5):1519–1531. https://doi.org/10.1534/G3.119.400064

  • Mpofu SI, Rashid KY (2001) Vegetative compatibility groups within Fusarium oxysporum f.sp. lini from Linum usitatissimum (flax) wilt nurseries in western Canada. Can J Bot 79:836–843

    Google Scholar 

  • Muravenko OV, Lemesh VA, Samatadze TE, Amosova AV, Grushetskaya ZE, Popov KV, Semenova OY, Khotyuleva LV, Zelenin AV (2003) Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russ J Genet 39(4):414–421

    CAS  Google Scholar 

  • Nichterlein K (2003) Anther culture of linseed (Linum usitatissimum L.). In: Maluszynski M, Kasha K, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. a manual. IAEA, pp 249–254

    Google Scholar 

  • Nihad SAI, Hasan MK, Kabir A, Hasan MdA-I, Bhuiyan MdR, Yusop MR, Latif MA (2022) Linkage of SSR markers with rice blast resistance and development of partial resistant advanced lines of rice (Oryza sativa) through marker-assisted selection. Physiol Mol Biol Plants 1–17.https://doi.org/10.1007/S12298-022-01141-3

  • Ockendon DJ, Walters SM (1968) Linum L. Flora Europaea 2:206–211

    Google Scholar 

  • Omaha BD (2001) Flaxseed as a functional food source. J Sci Food Agri 81:889–894. https://doi.org/10.1002/jsfa.898

    Article  Google Scholar 

  • Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP et al (2015) Potential of a tomato magic population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J 13:565–577

    CAS  PubMed  Google Scholar 

  • Patel VD, Chopde PR (1981) Combining ability analysis over environments in diallel crosses of flax (Linum usitatissimum L.). Theor Appl Genet 60:339–343

    Google Scholar 

  • Qin J, Shi A, Song Q, Li S, Wang F, Cao Y, Ravelombola W, Song Q, Yang C, Zhang M (2019) Genome wide association study and genomic selection of amino acid concentrations in soybean seeds. Front Plant Sci 10:1445. https://doi.org/10.3389/FPLS.2019.01445/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragupathy R, Rathinavelu R, Cloutier S (2011) Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics 12:217. http://www.biomedcentral.com/1471-2164/12/217

  • Ravelombola WS, Qin J, Shi A, Nice L, Bao Y, Lorenz A, Orf JH, Young ND, Chen S (2020) Genome-wide association study and genomic selection for tolerance of soybean biomass to soybean cyst nematode infestation. PLoS ONE 15(7):e0235089. https://doi.org/10.1371/JOURNAL.PONE.0235089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeidi G (2012) Genetic variation and heritability for germination, seed vigour and field emergence in brown and yellow-seeded genotypes of flax. Int J Plant Prod 2(1):15–22

    Google Scholar 

  • Salej S, Kalia NR, Bhateria S, Sanjeev K (2007) Detection of genetic components of variation for some biometrical traits in Linum usitatissimum L. in sub-mountain Himalayan region. Euphytica 155:107–115

    Google Scholar 

  • Sannemann W, Huang BE, Mathew B, Leon J (2015) Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol Breed 35:86

    Google Scholar 

  • Sarinelli JM, Murphy JP, Tyagi P, Holland JB, Johnson JW, Mergoum M, Mason RE, Babar A, Harrison S, Sutton R, Griffey CA, Brown-Guedira G (2019) Training population selection and use of fixed effects to optimize genomic predictions in a historical USA winter wheat panel. Theor Appl Genet 132(4):1247–1261. https://doi.org/10.1007/S00122-019-03276-6/TABLES/5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123(4):218–223. https://doi.org/10.1111/J.1439-0388.2006.00595.X

    Article  CAS  PubMed  Google Scholar 

  • Seetharam A (1972) Interspecific hybridization in Linum. Euphytica 21(3):489–495

    Google Scholar 

  • Shivakumar M, Kumawat G, Nataraj V, Gireesh C, Gupta S, Satpute GK, Ratnaparkhe MB, Yadav DP (2019) NAM population–a novel genetic resource for soybean improvement: development and characterization for yield and attributing traits. Plant Genetic Resource 17:545–553

    Google Scholar 

  • Singh N, Agarwal N, Yadav HK (2019) Genome-wide SNP-based diversity analysis and association mapping in linseed (Linum usitatissimum L.). Euphytica 215(8):139

    Google Scholar 

  • Smith CE (1969) From vavilov to the present—a review. Econ Bot 23:2–19

    Google Scholar 

  • Smykal P, Bacova-Kerteszova N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122:1385–1397

    CAS  PubMed  Google Scholar 

  • Soriano M, Bariana H, Kant L, Qureshi N, Forrest K, Miah H, Bansal U (2022) Identification and characterisation of stripe rust resistance genes Yr66 and Yr67 in wheat cultivar VL Gehun 892. Agronomy 12(2):318. https://doi.org/10.3390/AGRONOMY12020318

    Article  Google Scholar 

  • Soto-Cerda BJ, Diederichsen A, Duguid S, Booker H, Rowland G, Cloutier S (2014) The potential of pale flax as a source of useful genetic variation for cultivated flax revealed through molecular diversity and association analyses. Mol Breeding 34(4):2091–2107. https://doi.org/10.1007/s11032-014-0165-5

    Article  CAS  Google Scholar 

  • Sun L, Wang R, Tang W, Chen Y, Zhou J, Ma H, Li S, Deng H, Han L, Chen Y, Tan Y, Zhu Y, Lin D, Zhu Q, Wang J, Huang D, Chen C (2022) Robust identification of low-Cd rice varieties by boosting the genotypic effect of grain Cd accumulation in combination with marker-assisted selection. J Hazard Mater 424:127703. https://doi.org/10.1016/J.JHAZMAT.2021.127703

    Article  CAS  PubMed  Google Scholar 

  • Tammes T (1925) Mutation and evolution. Z. Induct. Abstamm. u. VererbLehre 36:417–426

    Google Scholar 

  • Tobolski JJ, Kemery RD (1992) Identification of red maple cultivars by isozyme analysis. HortScience 27(2):169–171

    CAS  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1968) Flora Europaea. In: Rosaceae to umbelliferae, vol 2. Cambridge University Press, Cambridge, R.-U.

    Google Scholar 

  • Tyson H, Fieldes MA, Cheung C, Starobin J (1985) Isozyme relative mobility (R m) changes related to leaf position; apparently smooth R m trends and some implications. Biochem Genet 23(9–10):641–654

    CAS  PubMed  Google Scholar 

  • Vaisey-Genser M, Diane HM (2003) History of the cultivation and uses of flaxseed. In: Muir AD, Westcott ND (eds) Flax: The Genus Linum. Taylor and Francis, New York, pp 1–21

    Google Scholar 

  • van Beuningen LT, Busch RH (1997) Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Sci 37(3):981–988

    Google Scholar 

  • van Zeist W, Bakker-Heeres JAH (1975) Evidence for linseed cultivation before 6000 BC. J Archaeol Sci 2:215–219

    Google Scholar 

  • Vavilov NI (1926) Studies in the origin of cultivated plants. Leningrad, Vsesoiuz. Inst. Priklad, Moscow, Russia, 248p

    Google Scholar 

  • Vromans J (2006) Molecular genetic studies in flax (Linum usitatissimum L.). PhD thesis Wageningen University, The Netherlands

    Google Scholar 

  • Winkler H (1931) Linaceae. In: Engler A, Prantl, K (ed) Die Natürl. Pflanzenfam, 2

    Google Scholar 

  • Yadav PS, Mishra VK, Arun B, Chand R, Vishwakarma MK, Vasistha NK, Mishra AN, Kalappanavar IK, Joshi AK (2015) Enhanced resistance in wheat against stem rust achieved by marker assisted backcrossing involving three independent Sr genes. Curr Plant Biol 2:25–33. https://doi.org/10.1016/J.CPB.2015.05.001

    Article  Google Scholar 

  • Yang R, Yan Z, Wang Q, Li X, Feng F (2018) Marker-assisted backcrossing of lcyE for enhancement of proA in sweet corn. Euphytica 214(8):1–12. https://doi.org/10.1007/S10681-018-2212-5/TABLES/7

    Article  Google Scholar 

  • Yathish KR, Karjagi CG, Singh Gangoliya S, Kumar A, Preeti P, Yadav HK, Srivastava S, Kumar S, Singh A, Phagna RK, Das AK, Chandra Sekhar J, Hossain F, Gadag RN (2022) Introgression of the low phytic acid locus (lpa2) into elite maize (Zea Mays L.) inbreds through marker-assisted backcross breeding (MABB). https://doi.org/10.21203/rs.3.rs-1293507/v1

  • You FM, Booker HM, Duguid SD, Jia G, Cloutier S (2016) Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.). Crop J 4(4):290–303. https://doi.org/10.1016/J.CJ.2016.03.001

  • You FM, Cloutier S (2020) Mapping quantitative trait loci onto chromosome-scale pseudomolecules in flax. Methods Protoc 3(2):28. https://doi.org/10.3390/MPS3020028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You FM, Zheng C, Bartaula S, Khan N, Wang J, Cloutier S (2022) Genomic cross prediction for linseed improvement. Accelerated Plant Breed 4:451–480. https://doi.org/10.1007/978-3-030-81107-5_13

    Article  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551. https://doi.org/10.1534/genetics.107.074245

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeven AC (1982) Dictionary of cultivated plants and their centers of diversity, excluding ornamentals, forest tress and lower plants. Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands, 263p

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World: the origin and spread of cultivated plants in West Asia. Europe, and the Nile Valley Oxford University Press, New York

    Google Scholar 

  • Zohary D (1999) Monophyletic and polyphyletic origin of the crops on which agriculture was formed in the Near East. Genet Resour Crop Evol 46:133–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhlesur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M., Hoque, A. (2023). Flax Breeding. In: You, F.M., Fofana, B. (eds) The Flax Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-16061-5_4

Download citation

Publish with us

Policies and ethics