Skip to main content

Searching for Criteria for a Thinking Machine

  • Chapter
  • First Online:
Brain, Decision Making and Mental Health

Part of the book series: Integrated Science ((IS,volume 12))

  • 1028 Accesses

Summary

The paper discusses whether any reliable criterion can be found to conclude that thinking can be attributed to a machine. It outlines a brief history of the concept of criteria for machine thinking. It discusses the essence of the Turing Test as well as several objections to its adequacy. It also presents Searle’s paradox of the Chinese Room as the best-known concept for falsifying the Turing Test. It also outlines several innovations and alternative Turing Test options and offers some arguments against the paradox of the Chinese Room. Finally, it postulates its own criterion for machine thinking. This is based on the utterance of metaphysical questions which should be conceived by the computer itself. If questions like those raised by Leibniz and Heidegger are produced by a computer without special metaphysical programming, this is, in our view, a sufficient sign that the machine is thinking.

Graphical Abstract/Art Performance

Searching for criteria for a thinking machine.

All that we are is the result of what we have thought.

Buddha

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turing AM (1950) Computer machinery and intelligence. Mind 59(236):433–460

    Article  Google Scholar 

  2. Stringer DW (1967) The history of thinking machines. Can J Psychiatry 12(6):615–616

    Google Scholar 

  3. Prokhorov S (2018) The struggle against cybernetics in the USSR and its influence on the production of computers. Proceedings—2018 international conference on engineering technologies and computer science, EnT 2018, pp 69–73

    Google Scholar 

  4. Perez A, Tondl L (1965) K predmětu kybernetiky. Kybernetika 1(1):4–11

    Google Scholar 

  5. Stephenson AC (2003) Bioscience and analytical thinking machines. Analyst 128(4):318–319

    Article  Google Scholar 

  6. Danziger S (2018) Where intelligence lies: externalist and sociolinguistic perspectives on the turing test and AI. In: Philosophy and theory of artificial intelligence book series: studies in applied philosophy epistemology and rational ethics, vol ‏ 44, pp 158–174

    Google Scholar 

  7. Yu J (2020) Brilliance and darkness: turing test. J Comput Res Devel 57(5):906–911

    Google Scholar 

  8. Crane T (2003) The mechanical mind: a philosophical introduction to minds, machines and mental representation. Routledge, New York, p 272

    Book  Google Scholar 

  9. Nath R (2009) Philosophy of artificial intelligence a critique of the mechanistic theory of mind. Universal Publishers, Boca Raton, p 190

    Google Scholar 

  10. Chen M (2020) Imagination machines, Dartmouth-based turing tests, and a potted history of responses. AI Soc 35(1):283–287

    Article  Google Scholar 

  11. Savulescu J, Persson I (2012) Moral enhancement, freedom and the god machine. Monist 95(3):399–421

    Article  Google Scholar 

  12. Young G (2020) Objections to the god machine thought experiment and what they reveal about intelligibility of moral intervention by technological means. Philosophia 48(2):831–846

    Article  Google Scholar 

  13. Stephan CD, Klima G (2020) Artificial intelligence and its natural limits. AI & society early. Access May 2020

    Google Scholar 

  14. Koch C (2019) The feeling of life itself: why consciousness is widespread but can’t be computed. MIT Press, Massetchusses, p 280

    Book  Google Scholar 

  15. Newman MHA, Turing AM, Jefferson G (2004) Can automatic calculating machines be said to thinking? In: Turing test, verbal behavior as the hallmark of intelligence, pp 117–132

    Google Scholar 

  16. Tarnate KJ, Garcia MM, Sotelo-Bator P (2020) Short poem generation (SPG): a performance evaluation of hidden markov model based on readability index and turing test. J Adv Comput Sci Appl 11(2):294–297

    Google Scholar 

  17. Marinelli D, Stevens S (1998) Synthetic interviews: the art of creating a ‘dyad’ between humans and machine-based characters. Proceedings 1998 IEEE 4th workshop interactive voice technology for telecommunications applications. IVTTA’98, Torino, Italy, pp 43–48

    Google Scholar 

  18. Ch’ng E (2019) Art by computing machinery: is machine art acceptable in the world? ACM Trans Multimedia Comput Commun Appl 15(2)

    Google Scholar 

  19. Scriven M (1964) Views on human nature. Behaviorism and phenomenology. University of Cicago Press, Chicago, pp 163–190

    Google Scholar 

  20. Galleni L (2011) Teilhard de Chardin and the Latin school of evolution: complexity, moving towards and equilibriums of nature. Pensamiento 67(254):689–708

    Google Scholar 

  21. Sloman A (2018) Can digital computers support ancient mathematical consciousness? Information 9(5)

    Google Scholar 

  22. Lacko I (2020) Not random, not deliberate—something in-between: Posthumanist themes in ex Machina. Filozofia 75(2):148–157

    Google Scholar 

  23. Gáliková S (2010) The feeling brain—the thinking soul. Hum Aff 20(3):203–209

    Article  Google Scholar 

  24. Vacek M (2017) Extended modal dimensionalism. Acta Anal—Int Periodical Philos Anal Tradit 32(1):13–28

    Google Scholar 

  25. Saygin A, Cicekli I, Akman V (2000) Turing test: 50 years later. Mind Mach: J Artif Intell, Philos Cogn Sci 10(4):463–518

    Article  Google Scholar 

  26. Tvrdý F (2014) Turingův test. Togga, Praha, p 213

    Google Scholar 

  27. Soni B, Hingston P (2008) Bots trained to play like a human are more fun. In: Proceedings of international joint conference on neural networks. IEEE, Hong Kong, pp 363–369

    Google Scholar 

  28. Floridi L (2013) The philosophy of information. Oxford University Press, Oxford, p 405

    Google Scholar 

  29. Liptáková M (2016) Druhy umelej inteligencie. In: Posolstvo Jána Pavla II. Verbum, Ružomberok, pp 1193–1196

    Google Scholar 

  30. Dostálová L (2010) Hilbertův program: proměna matematické praxe před a po Gödelových větách o neúplnosti. Matematika v proměnách věků VI. Matfyzpress, Praha, pp 175–185

    Google Scholar 

  31. Lucas JR (1961) Minds, machines and Gödel. Philosophy 36(137):112–127

    Article  Google Scholar 

  32. Carnap R (1994) Science and analysis of language. Norms, values and society. In: Vienna circle institute yearbook, vol 2, pp 291–294

    Google Scholar 

  33. Michalski R, Kaufman K (2001) A knowledge scout for discovering medical patterns: methodology and system SCAMP. In: Larsen HL, Andreasen T, Christiansen H, Kacprzyk J, Zadrożny S (eds) Flexible query answering systems. Advances in soft computing, vol 7. Physica, Heidelberg, pp 485–496

    Google Scholar 

  34. Sadovskij VN (1979) Základy všeobecnej teórie systémov. Pravda, Bratislava, p 275

    Google Scholar 

  35. Bartoš V (2012) Is evolution a turing machine?. In: Beyond AI: artificial dreams, ZU, Plžeň, pp 87–97

    Google Scholar 

  36. Duda W (1958) John McCarthy and Claude Shannon. Preface. In: Shannon CE, McCarthy J (eds) Automata studies, annals of mathematics studies no. 34, lithoprinted, Princeton University Press, Princeton 1956, pp v–viii; Kleene SC (1956) Representations of events in nerve nets and finite automata. In: Shannon CE, McCarthy J (eds) Automata studies, annals of mathematics studies no. 34, lithoprinted, Princeton University Press, Princeton, pp 3–41; J Symbolic Logic 23(1):59–60

    Google Scholar 

  37. Saariluoma P, Rauterberg M (2016) Turing’s error-revised. Int J Philos Study 4:22–41

    Article  Google Scholar 

  38. Vorobiev I, Samsonovich A (2018) A conceptually different approach to the empirical test of Alan turing. Procedia Comput Sci 123:512–521

    Article  Google Scholar 

  39. Ribola J (2017) Is the turing test still relevant? Probl Relevance Icon Artif Intell. Mondo Digitale 16(71)

    Google Scholar 

  40. Gonzales R (2020) Classical AI linguistic understanding and the insoluble Cartesian problem. AI Soc 35(2):441–450

    Article  Google Scholar 

  41. Cagatay H (2019) A fair version of the Chinese room. Problemos 96:121–133

    Article  Google Scholar 

  42. Marvan T (2010) Otázka významu. Togga, Praha, p 202

    Google Scholar 

  43. Zolyan S (2017) On the interaction of meanings in natural languages: compositional rules, context dependence and coercion. CSIT conference proceedings. National Academy of Sciences, Yerevan, pp 118–120

    Google Scholar 

  44. Stock-Homburg R et al (2020) Evaluation of the handshake turing test for anthropomorphic robots. 15th annual ACM/IEEE international conference on human robot interaction, HRI 202, pp 456–458

    Google Scholar 

  45. Neufeld E, Finnestad S (2020) In defense of the turing test. AI & Society (in Press)

    Google Scholar 

  46. McCoy J, Ullman T (2018) A minimal turing test. J Exp Soc Psychol 79:1–8

    Article  Google Scholar 

  47. de Kleijn R, Wijnen M, Poletiek F (2019) The effect of context-dependent information and sentence constructions on perceived humanness of an agent in a turing test. Knowl-Based Syst 163:794–799

    Article  Google Scholar 

  48. Arsovski S, Wong SH, Cheok AD (2018) Open-domain neural conversational agents: the step towards artificial general intelligence. Int J Adv Comput Sci Appl 9(6):402–408

    Google Scholar 

  49. Nakamura K (2019) My algorithms have determined you’re not human: AI-ML, reverse turing-tests, and the disability experience. ASSETS’19: the 21st international ACM SIGACCESS conference on computers and accessibility, pp 1–2

    Google Scholar 

  50. Bonneh D et al (2019) How relevant is the turing test in the age of sophisbots? IEEE Secur Priv 17(6):64–71

    Article  Google Scholar 

  51. Powell J (2019) Trust me, I’m a chatbot: how artificial intelligence in health care fails the turing test. J Med Internet Res 21(10)

    Google Scholar 

  52. Liu A et al (2019) Applying the turing test to contouring: are machine-generated contours indistinguishable from human generated ones?. Int J Radiat Oncol Biol Phys 105(1)

    Google Scholar 

  53. Srinivasan B, Shah K (2019) Towards a unified framework for developing ethical and practical turing tests. AI Soc 34(1):145–152

    Article  Google Scholar 

  54. Silichvev D, Volobuev A, Kuzina E (2019) Artificial intelligence and the future of manding. Stud Comput Intell 826:699–706

    Article  Google Scholar 

  55. Lupkowski P, Jurowska P (2019) The minimum itelligent signal test (MIST) as an alternative to the turing test. Diametros 16(59):35–47

    Article  Google Scholar 

  56. Kim H, Byun S (2018) What is MTT? (Moral turing test)? Proceedings of TENCON—2018 IEEE region 10 conference, pp 412–415

    Google Scholar 

  57. Walsh T (2017) The meta-turing-test. The AAAI workshop on AI, ethics and society WS-17-02, pp 132–137

    Google Scholar 

  58. Steingartner W, Novitzká V (2015) A new approach to semantics of procedures in categorical terms. In: Scientific conference on informatics, 2015 IEEE 13th international conference, pp 252–257

    Google Scholar 

  59. Rapaport W (2006) How Helen Keller used syntactic semantics to escape from a Chinese room. Mind Mach 16(4):381–436

    Article  Google Scholar 

  60. Mastroeni I, Zanardini D (2008) Data dependencies and program slicing: from syntax to abstract semantics. In: PEPM 08 proceedings of the 2008 ACM sigplan symposium on partial evaluation and semantics-based program manipulation, pp 125–134

    Google Scholar 

  61. Iordanskaja L, Meľcuk I (2019) Semantics in syntax: linear ordering of genitive adnominal dependents cosubordinated to a noun in Russian. Voprosy Yazykoznaniya 4:33–46

    Article  Google Scholar 

  62. Sucharek P (2016) A total image: praise of thinking. Filozofia 71(6):487–493

    Google Scholar 

  63. Gvozdiak V (2014) Bases and ways of description. In: Jakobsonova semiotická teorie. Univerzita Palackého, Olomouc, pp 11–36

    Google Scholar 

Download references

Acknowledgements

This paper was supported with institutional grant IG-KSV-ET-01-2021/12 Ethics in the context of its implementation into society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Ambrozy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ambrozy, M. (2023). Searching for Criteria for a Thinking Machine. In: Rezaei, N. (eds) Brain, Decision Making and Mental Health. Integrated Science, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-15959-6_24

Download citation

Publish with us

Policies and ethics