Skip to main content

Antimalarial Drug Resistance: Trends, Mechanisms, and Strategies to Combat Antimalarial Resistance

  • Chapter
  • First Online:
Malarial Drug Delivery Systems

Abstract

Malaria is among the most prevalent parasite infections caused by Plasmodium genus. According to the most recent data available for the year 2020, the disease killed about 627,000 people, the majority (67%) of whom were children under the age of 5. Resistance, notably in Plasmodium falciparum, has been a foremost factor in the doubling of malaria-related child mortality in eastern and southern Africa. Additionally, antimalarial drug resistance is the utmost likely cause of malaria’s global recurrence in the last three decades. Plasmodium falciparum and Plasmodium vivax have been found to be resistant to currently available antimalarial medicines. Plasmodium falciparum parasite has evolved resistance to practically all antimalarial agents in use, while Plasmodium vivax exhibited resistance to primaquine and chloroquine in some areas. Understanding the statistics of distinct classes of antimalarial drug resistance and introducing strategies that can postpone the emergence of resistance are crucial for making predictions on the onset and spread of resistance to existing antimalarial drugs and recently introduced molecules. Furthermore, understanding the mechanism of resistance and finding particular genetic loci linked to this phenotype are critical for antimalarial resistance surveillance and containment. This chapter summarizes the mechanisms and molecular markers of antimalarial drug resistance and emerging strategies to counter its resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti-Infect Ther. 2021;0(0):1–20. Available from:. https://doi.org/10.1080/14787210.2021.1962291.

    Article  CAS  Google Scholar 

  2. Takumida M, Takumida H, Anniko M. Localization of histamine (H1, H2, H3 and H4) receptors in mouse inner ear. Acta Otolaryngol. 2016;136(6):537–44. https://doi.org/10.3109/00016489.2015.1136433.

    Article  CAS  PubMed  Google Scholar 

  3. Ippolito MM, Moser KA, Kabuya J-BB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. Curr Epidemiol Rep. 2021;8(2):46–62. Available from:. https://doi.org/10.1007/s40471-021-00266-5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leang R, Taylor WRJ, Bouth DM, Song L, Tarning J, Char MC, et al. Evidence of Plasmodium falciparum malaria multidrug resistance to Artemisinin and Piperaquine in Western Cambodia: Dihydroartemisinin-Piperaquine Open-Label Multicenter Clinical Assessment. Antimicrob Agents Chemother. 2015;59(8):4719–26. https://doi.org/10.1128/AAC.00835-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amelo W, Makonnen E. Efforts made to eliminate drug-resistant malaria and its challenges. Biomed Res Int. 2021;2021:5539544. https://doi.org/10.1155/2021/5539544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017;23(8):917–28. https://doi.org/10.1038/nm.4381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chu CS, White NJ. The prevention and treatment of Plasmodium vivax malaria. PLoS Med. 2021;18(4):e1003561. https://doi.org/10.1371/journal.pmed.1003561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist. 2021;16:102–18. Available from: https://www.sciencedirect.com/science/article/pii/S2211320721000269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rathmes G, Rumisha SF, Lucas TCD, Twohig KA, Python A, Nguyen M, et al. Global estimation of antimalarial drug effectiveness for the treatment of uncomplicated Plasmodium falciparum malaria 1991–2019. Malar J. 2020;19(1):374. Available from:. https://doi.org/10.1186/s12936-020-03446-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore DV, Lanier JE. Observations on two Plasmodium falciparum infections with an abnormal response to chloroquine. Am J Trop Med Hyg. 1961;10:5–9. https://doi.org/10.4269/ajtmh.1961.10.5.

    Article  CAS  PubMed  Google Scholar 

  11. Harinasuta T, Suntharasamai P, Viravan C. Chloroquine-resistant falciparum malaria in Thailand. Lancet (London, UK). 1965;2(7414):657–60. https://doi.org/10.1016/s0140-6736(65)90395-8.

    Article  CAS  Google Scholar 

  12. Payne D. Spread of chloroquine resistance in Plasmodium falciparum. Parasitol Today. 1987;3(8):241–6. https://doi.org/10.1016/0169-4758(87)90147-5.

    Article  CAS  PubMed  Google Scholar 

  13. Rønn AM, Msangeni HA, Mhina J, Wernsdorfer WH, Bygbjerg IC. High level of resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine in children in Tanzania. Trans R Soc Trop Med Hyg. 1996;90(2):179–81. https://doi.org/10.1016/s0035-9203(96)90129-7.

    Article  PubMed  Google Scholar 

  14. Clyde DF, Shute GT. Resistance of Plasmodium falciparum in Tanganyika to pyrimethamine administered at weekly intervals. Trans R Soc Trop Med Hyg. 1957;51(6):505–13. https://doi.org/10.1016/0035-9203(57)90039-1.

    Article  CAS  PubMed  Google Scholar 

  15. Clyde DF. Observations on monthly pyrimethamine (daraprim) prophylaxis in an East African village. East Afr Med J. 1954;31(2):41–6.

    CAS  PubMed  Google Scholar 

  16. Breman JG, Alilio MS, Mills A. Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg. 2004;71(2 Suppl):1–15.

    Article  PubMed  Google Scholar 

  17. Bosman A, Mendis KN. A major transition in malaria treatment: the adoption and deployment of artemisinin-based combination therapies. Am J Trop Med Hyg. 2007;77(6 Suppl):193–7.

    Article  PubMed  Google Scholar 

  18. Na-Bangchang K, Karbwang J. Pharmacology of antimalarial drugs, current anti-malarials. In: Kremsner PG, Krishna S, editors. Encyclopedia of Malaria. New York: Springer; 2019. p. 1–82. Available from:. https://doi.org/10.1007/978-1-4614-8757-9_149-1.

    Chapter  Google Scholar 

  19. Snow RW, Amratia P, Kabaria CW, Noor AM, Marsh K. The changing limits and incidence of malaria in Africa: 1939–2009. Adv Parasitol. 2012;78:169–262. https://doi.org/10.1016/B978-0-12-394303-3.00010-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361(5):455–67. https://doi.org/10.1056/NEJMoa0808859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rogers WO, Sem R, Tero T, Chim P, Lim P, Muth S, et al. Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia. Malar J. 2009;8:10. https://doi.org/10.1186/1475-2875-8-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT, Thanh NV, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019;19(9):952–61. https://doi.org/10.1016/S1473-3099(19)30391-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother. 2000;44(8):2100–8. https://doi.org/10.1128/AAC.44.8.2100-2108.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whitby M, Wood G, Veenendaal JR, Rieckmann K. Chloroquine-resistant Plasmodium vivax, vol. 2. Lancet (London, England). England; 1989. p. 1395. https://doi.org/10.1016/s0140-6736(89)92002-3.

  25. Maguire JD, Sumawinata IW, Masbar S, Laksana B, Prodjodipuro P, Susanti I, et al. Chloroquine-resistant Plasmodium malariae in south Sumatra, Indonesia. Lancet (London, UK). 2002;360(9326):58–60. https://doi.org/10.1016/S0140-6736(02)09336-4.

    Article  CAS  Google Scholar 

  26. Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P, Escalante A, et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet. 2016;48(8):953–8. Available from:. https://doi.org/10.1038/ng.3588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Showler AJ, Kain KC, Boggild AK. Protozoan diseases: Malaria clinical features, management, and prevention, International Encyclopedia of Public Health, vol. 5. 2nd ed. Elsevier; 2016. 103–113 p. Available from:. https://doi.org/10.1016/B978-0-12-803678-5.00360-X.

    Book  Google Scholar 

  28. Reyburn H. New WHO guidelines for the treatment of malaria. Vol. 340, BMJ (Clinical research ed.). England; 2010. p. c2637. https://doi.org/10.1136/bmj.c2637

  29. Paget-McNicol S, Saul A. Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology. 2001;122(Pt 5):497–505. https://doi.org/10.1017/s0031182001007739.

    Article  CAS  PubMed  Google Scholar 

  30. Guyant P, Corbel V, Guérin PJ, Lautissier A, Nosten F, Boyer S, et al. Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Malar J. 2015;14(1):279. Available from:. https://doi.org/10.1186/s12936-015-0802-4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Newton PN, Green MD, Mildenhall DC, Plançon A, Nettey H, Nyadong L, et al. Poor quality vital anti-malarials in Africa – an urgent neglected public health priority. Malar J. 2011;10(1):352. Available from:. https://doi.org/10.1186/1475-2875-10-352.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, et al. Chloroquine and Sulfadoxine-Pyrimethamine resistance in Sub-Saharan Africa—a review. Front Genet. 2021;12:668574. https://doi.org/10.3389/fgene.2021.668574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, pH and the anti-malarial action of chloroquine. Nature. 1972;235(5332):50–2. https://doi.org/10.1038/235050a0.

    Article  CAS  PubMed  Google Scholar 

  34. Yayon A, Cabantchik ZI, Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J. 1984;3(11):2695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chinappi M, Via A, Marcatili P, Tramontano A. On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS One. 2010;5(11):e14064. https://doi.org/10.1371/journal.pone.0014064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bossi R, Braga PC, Centanni S, Legnani D, Moavero NE, Allegra L. Antitussive activity and respiratory system effects of levodropropizine in man. Arzneimittelforschung. 1988;38(8):1159–62.

    CAS  PubMed  Google Scholar 

  37. Browning DJ. Pharmacology of Chloroquine and Hydroxychloroquine. In: Hydroxychloroquine and Chloroquine Retinopathy. New York: Springer; 2014. p. 35–63. https://doi.org/10.1007/978-1-4939-0597-3_2

  38. Bray PG, Janneh O, Raynes KJ, Mungthin M, Ginsburg H, Ward SA. Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum. J Cell Biol. 1999;145(2):363–76. https://doi.org/10.1083/jcb.145.2.363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bray PG, Mungthin M, Ridley RG, Ward SA. Access to Hematin: the basis of chloroquine resistance. Mol Pharmacol. 1998;54(1):170–9. Available from: https://molpharm.aspetjournals.org/content/54/1/170

    Article  CAS  PubMed  Google Scholar 

  40. Ecker A, Lehane AM, Clain J, Fidock DA. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28(11):504–14. https://doi.org/10.1016/j.pt.2012.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bray PG, Martin RE, Tilley L, Ward SA, Kirk K, Fidock DA. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol. 2005;56(2):323–33. https://doi.org/10.1111/j.1365-2958.2005.04556.x.

    Article  CAS  PubMed  Google Scholar 

  42. Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis. 2001;184(6):770–6. https://doi.org/10.1086/322858.

    Article  CAS  PubMed  Google Scholar 

  43. Martin RE, Kirk K. The malaria parasite’s chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol. 2004;21(10):1938–49. https://doi.org/10.1093/molbev/msh205.

    Article  CAS  PubMed  Google Scholar 

  44. Cooper RA, Lane KD, Deng B, Mu J, Patel JJ, Wellems TE, et al. Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Mol Microbiol. 2007;63(1):270–82. https://doi.org/10.1111/j.1365-2958.2006.05511.x.

    Article  CAS  PubMed  Google Scholar 

  45. Doucette PA, Whitson LJ, Cao X, Schirf V, Demeler B, Valentine JS, et al. Dissociation of human copper-zinc superoxide dismutase dimers using chaotrope and reductant. Insights into the molecular basis for dimer stability. J Biol Chem. 2004;279(52):54558–66. https://doi.org/10.1074/jbc.M409744200.

    Article  CAS  PubMed  Google Scholar 

  46. Cooper RA, Hartwig CL, Ferdig MT. pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: a functional and evolutionary perspective. Acta Trop. 2005;94(3):170–80. https://doi.org/10.1016/j.actatropica.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  47. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000;6(4):861–71. https://doi.org/10.1016/s1097-2765(05)00077-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooper RA, Ferdig MT, Su X-Z, Ursos LMB, Mu J, Nomura T, et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol. 2002;61(1):35–42. https://doi.org/10.1124/mol.61.1.35.

    Article  CAS  PubMed  Google Scholar 

  49. Lehane AM, Kirk K. Chloroquine resistance-conferring mutations in pfcrt give rise to a chloroquine-associated H+ leak from the malaria parasite’s digestive vacuole. Antimicrob Agents Chemother. 2008;52(12):4374–80. https://doi.org/10.1128/AAC.00666-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beshir K, Sutherland CJ, Merinopoulos I, Durrani N, Leslie T, Rowland M, et al. Amodiaquine resistance in Plasmodium falciparum Malaria in Afghanistan is associated with the pfcrt SVMNT Allele at Codons 72 to 76. Antimicrob Agents Chemother. 2010;54(9):3714–6. https://doi.org/10.1128/AAC.00358-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ndung’u L, Langat B, Magiri E, Ng’ang’a J, Irungu B, Nzila A, et al. Amodiaquine resistance in Plasmodium berghei is associated with PbCRT His95Pro mutation, loss of chloroquine, artemisinin and primaquine sensitivity, and high transcript levels of key transporters. Wellcome Open Res. 2017;2:44. https://doi.org/10.12688/wellcomeopenres.11768.2.

    Article  CAS  PubMed  Google Scholar 

  52. Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet (London, UK). 2004;364(9432):438–47. https://doi.org/10.1016/S0140-6736(04)16767-6.

    Article  CAS  Google Scholar 

  53. Preechapornkul P, Imwong M, Chotivanich K, Pongtavornpinyo W, Dondorp AM, Day NPJ, et al. Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob Agents Chemother. 2009;53(4):1509–15. https://doi.org/10.1128/AAC.00241-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baliraine FN, Rosenthal PJ. Prolonged selection of pfmdr1 polymorphisms after treatment of falciparum malaria with artemether-lumefantrine in Uganda. J Infect Dis. 2011;204(7):1120–4. https://doi.org/10.1093/infdis/jir486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Windle ST, Lane KD, Gadalla NB, Liu A, Mu J, Caleon RL, et al. Evidence for linkage of pfmdr1, pfcrt, and pfk13 polymorphisms to lumefantrine and mefloquine susceptibilities in a Plasmodium falciparum cross. Int J Parasitol Drugs Drug Resist. 2020;14:208–17. Available from: https://www.sciencedirect.com/science/article/pii/S2211320720300403

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K, Zalewski C, et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob Agents Chemother. 2003;47(8):2418–23. https://doi.org/10.1128/AAC.47.8.2418-2423.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol. 2003;49(4):977–89. https://doi.org/10.1046/j.1365-2958.2003.03627.x.

    Article  CAS  PubMed  Google Scholar 

  58. Gregson A, Plowe CV. Mechanisms of resistance of malaria parasites to Antifolates. Pharmacol Rev. 2005;57(1):117–45. Available from: https://pharmrev.aspetjournals.org/content/57/1/117

    Article  CAS  PubMed  Google Scholar 

  59. Yuthavong Y. Basis for antifolate action and resistance in malaria. Microbes Infect. 2002;4(2):175–82. https://doi.org/10.1016/s1286-4579(01)01525-8.

    Article  CAS  PubMed  Google Scholar 

  60. Nzila A. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J Antimicrob Chemother. 2006;57(6):1043–54. Available from:. https://doi.org/10.1093/jac/dkl104.

    Article  CAS  PubMed  Google Scholar 

  61. Sridaran S, McClintock SK, Syphard LM, Herman KM, Barnwell JW, Udhayakumar V. Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations. Malar J. 2010;9(1):247. Available from:. https://doi.org/10.1186/1475-2875-9-247.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Japrung D, Leartsakulpanich U, Chusacultanachai S, Yuthavong Y. Conflicting requirements of Plasmodium falciparum dihydrofolate reductase mutations conferring resistance to pyrimethamine-WR99210 combination. Antimicrob Agents Chemother. 2007;51(12):4356–60. https://doi.org/10.1128/AAC.00577-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang T, Chen J, Fu H, Wu K, Yao Y, Eyi JUM, et al. High prevalence of Pfdhfr–Pfdhps quadruple mutations associated with sulfadoxine–pyrimethamine resistance in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea. Malar J. 2019;18(1):101. Available from:. https://doi.org/10.1186/s12936-019-2734-x.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403(6772):906–9. https://doi.org/10.1038/35002615.

    Article  CAS  PubMed  Google Scholar 

  65. Corrêa Soares JBR, Menezes D, Vannier-Santos MA, Ferreira-Pereira A, Almeida GT, Venancio TM, et al. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl Trop Dis. 2009;3(7):e477. https://doi.org/10.1371/journal.pntd.0000477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009;7(12):864–74. https://doi.org/10.1038/nrmicro2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bray PG, Ward SA, O’Neill PM. Quinolines and artemisinin: chemistry, biology and history. Curr Top Microbiol Immunol. 2005;295:3–38. https://doi.org/10.1007/3-540-29088-5_1.

    Article  CAS  PubMed  Google Scholar 

  68. Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, et al. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet (London, UK). 2005;366(9501):1960–3. https://doi.org/10.1016/S0140-6736(05)67787-2.

    Article  CAS  Google Scholar 

  69. Hunt P, Afonso A, Creasey A, Culleton R, Sidhu ABS, Logan J, et al. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol Microbiol. 2007;65(1):27–40. https://doi.org/10.1111/j.1365-2958.2007.05753.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505(7481):50–5. https://doi.org/10.1038/nature12876.

    Article  CAS  PubMed  Google Scholar 

  71. Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 2011;9(8):e1001138. https://doi.org/10.1371/journal.pbio.1001138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lell B, Kremsner PG. Clindamycin as an antimalarial drug: review of clinical trials. Antimicrob Agents Chemother. 2002;46(8):2315–20. https://doi.org/10.1128/AAC.46.8.2315-2320.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Obonyo CO, Juma EA. Clindamycin plus quinine for treating uncomplicated falciparum malaria: a systematic review and meta-analysis. Malar J. 2012;11:2. https://doi.org/10.1186/1475-2875-11-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramharter M, Oyakhirome S, Klein Klouwenberg P, Adégnika AA, Agnandji ST, Missinou MA, et al. Artesunate-clindamycin versus quinine-clindamycin in the treatment of Plasmodium falciparum malaria: a randomized controlled trial. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2005;40(12):1777–84. https://doi.org/10.1086/430309.

    Article  CAS  Google Scholar 

  75. Hodoameda P. P. falciparum and its molecular markers of resistance to antimalarial drugs. In: Tyagi RK, editor. Plasmodium species and drug resistance. Rijeka: IntechOpen; 2021. Available from:. https://doi.org/10.5772/intechopen.98372.

    Chapter  Google Scholar 

  76. Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourté Y, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344(4):257–63. https://doi.org/10.1056/NEJM200101253440403.

    Article  PubMed  Google Scholar 

  77. Menard D, Yapou F, Manirakiza A, Djalle D, Matsika-Claquin MD, Talarmin A. Polymorphisms in pfcrt, pfmdr1, dhfr genes and in vitro responses to antimalarials in Plasmodium falciparum isolates from Bangui, Central African Republic. Am J Trop Med Hyg. 2006;75(3):381–7.

    Article  CAS  PubMed  Google Scholar 

  78. Echeverry DF, Holmgren G, Murillo C, Higuita JC, Björkman A, Gil JP, et al. Short report: polymorphisms in the pfcrt and pfmdr1 genes of Plasmodium falciparum and in vitro susceptibility to amodiaquine and desethylamodiaquine. Am J Trop Med Hyg. 2007;77(6):1034–8.

    Article  CAS  PubMed  Google Scholar 

  79. Ferreira PE, Holmgren G, Veiga MI, Uhlén P, Kaneko A, Gil JP. PfMDR1: mechanisms of transport modulation by functional polymorphisms. PLoS One. 2011;6(9):e23875. https://doi.org/10.1371/journal.pone.0023875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilson CM, Volkman SK, Thaithong S, Martin RK, Kyle DE, Milhous WK, et al. Amplification of pfmdr 1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol. 1993;57(1):151–60. https://doi.org/10.1016/0166-6851(93)90252-s.

    Article  CAS  PubMed  Google Scholar 

  81. Picot S, Olliaro P, de Monbrison F, Bienvenu A-L, Price RN, Ringwald P. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J. 2009;8:89. https://doi.org/10.1186/1475-2875-8-89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dokomajilar C, Nsobya SL, Greenhouse B, Rosenthal PJ, Dorsey G. Selection of Plasmodium falciparum pfmdr1 alleles following therapy with artemether-lumefantrine in an area of Uganda where malaria is highly endemic. Antimicrob Agents Chemother. 2006;50(5):1893–5. https://doi.org/10.1128/AAC.50.5.1893-1895.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sisowath C, Petersen I, Veiga MI, Mårtensson A, Premji Z, Björkman A, et al. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J Infect Dis. 2009;199(5):750–7. https://doi.org/10.1086/596738.

    Article  CAS  PubMed  Google Scholar 

  84. Anderson TJC, Nair S, Qin H, Singlam S, Brockman A, Paiphun L, et al. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother. 2005;49(6):2180–8. https://doi.org/10.1128/AAC.49.6.2180-2188.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Raj DK, Mu J, Jiang H, Kabat J, Singh S, Sullivan M, et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem. 2009;284(12):7687–96. https://doi.org/10.1074/jbc.M806944200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bosia A, Ghigo D, Turrini F, Nissani E, Pescarmona GP, Ginsburg H. Kinetic characterization of Na+/H+ antiport of Plasmodium falciparum membrane. J Cell Physiol. 1993;154(3):527–34. https://doi.org/10.1002/jcp.1041540311.

    Article  CAS  PubMed  Google Scholar 

  87. Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su X, et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol. 2004;52(4):985–97. https://doi.org/10.1111/j.1365-2958.2004.04035.x.

    Article  CAS  PubMed  Google Scholar 

  88. Hyde JE. Exploring the folate pathway in Plasmodium falciparum. Acta Trop. 2005;94(3):191–206. https://doi.org/10.1016/j.actatropica.2005.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cowman AF, Morry MJ, Biggs BA, Cross GA, Foote SJ. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci USA. 1988;85(23):9109–13. https://doi.org/10.1073/pnas.85.23.9109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thaithong S, Ranford-Cartwright LC, Siripoon N, Harnyuttanakorn P, Kanchanakhan NS, Seugorn A, et al. Plasmodium falciparum: gene mutations and amplification of dihydrofolate reductase genes in parasites grown in vitro in presence of pyrimethamine. Exp Parasitol. 2001;98(2):59–70. https://doi.org/10.1006/expr.2001.4618.

    Article  CAS  PubMed  Google Scholar 

  91. Urdaneta L, Plowe C, Goldman I, Lal AA. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela. Am J Trop Med Hyg. 1999;61(3):457–62. https://doi.org/10.4269/ajtmh.1999.61.457.

    Article  CAS  PubMed  Google Scholar 

  92. Wernsdorfer WH, Noedl H. Molecular markers for drug resistance in malaria: use in treatment, diagnosis and epidemiology. Curr Opin Infect Dis. 2003;16(6):553–8. https://doi.org/10.1097/00001432-200312000-00007.

    Article  CAS  PubMed  Google Scholar 

  93. Krishna S, Pulcini S, Fatih F, Staines H. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol. 2010;26(11):517–23. https://doi.org/10.1016/j.pt.2010.06.014.

    Article  CAS  PubMed  Google Scholar 

  94. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411–23. https://doi.org/10.1056/NEJMoa1314981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barton V, Fisher N, Biagini GA, Ward SA, O’Neill PM. Inhibiting Plasmodium cytochrome bc1: a complex issue. Curr Opin Chem Biol. 2010;14(4):440–6. https://doi.org/10.1016/j.cbpa.2010.05.005.

    Article  CAS  PubMed  Google Scholar 

  96. Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol. 2007;23(5):213–22. https://doi.org/10.1016/j.pt.2007.03.002.

    Article  CAS  PubMed  Google Scholar 

  97. Lu F, Culleton R, Zhang M, Ramaprasad A, von Seidlein L, Zhou H, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. New England J Med USA. 2017;376:991–3. https://doi.org/10.1056/NEJMc1612765.

    Article  Google Scholar 

  98. Devine SM, MacRaild CA, Norton RS, Scammells PJ. Antimalarial drug discovery targeting apical membrane antigen 1. MedChemComm. 2017;8(1):13–20. https://doi.org/10.1039/c6md00495d.

    Article  CAS  PubMed  Google Scholar 

  99. Cowell AN, Istvan ES, Lukens AK, Gomez-Lorenzo MG, Vanaerschot M, Sakata-Kato T, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191–9. https://doi.org/10.1126/science.aan4472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Renslo AR. Antimalarial drug discovery: from Quinine to the Dream of Eradication. ACS Med Chem Lett. 2013;4(12):1126–8. https://doi.org/10.1021/ml4004414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Davis TME, Karunajeewa HA, Ilett KF. Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust. 2005;182(4):181–5. https://doi.org/10.5694/j.1326-5377.2005.tb06650.x.

    Article  PubMed  Google Scholar 

  102. Kimani J, Phiri K, Kamiza S, Duparc S, Ayoub A, Rojo R, et al. Efficacy and safety of Azithromycin-Chloroquine versus Sulfadoxine-Pyrimethamine for intermittent preventive treatment of Plasmodium falciparum malaria infection in pregnant women in Africa: an open-label, randomized trial. PLoS One. 2016;11(6):e0157045. https://doi.org/10.1371/journal.pone.0157045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coulibaly B, Pritsch M, Bountogo M, Meissner PE, Nebié E, Klose C, et al. Efficacy and safety of triple combination therapy with artesunate-amodiaquine-methylene blue for falciparum malaria in children: a randomized controlled trial in Burkina Faso. J Infect Dis. 2015;211(5):689–97. https://doi.org/10.1093/infdis/jiu540.

    Article  CAS  PubMed  Google Scholar 

  104. Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol. 2003;206(Pt 21):3735–44. https://doi.org/10.1242/jeb.00589.

    Article  CAS  PubMed  Google Scholar 

  105. Sidhu ABS, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science. 2002;298(5591):210–3. https://doi.org/10.1126/science.1074045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kublin JG, Cortese JF, Njunju EM, Mukadam RAG, Wirima JJ, Kazembe PN, et al. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis. 2003;187(12):1870–5. https://doi.org/10.1086/375419.

    Article  PubMed  Google Scholar 

  107. Mohammed A, Ndaro A, Kalinga A, Manjurano A, Mosha JF, Mosha DF, et al. Trends in chloroquine resistance marker, Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar J. 2013;12:415. https://doi.org/10.1186/1475-2875-12-415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Drinkwater N, McGowan S. From crystal to compound: structure-based antimalarial drug discovery. Biochem J. 2014;461(3):349–69. https://doi.org/10.1042/BJ20140240.

    Article  CAS  PubMed  Google Scholar 

  109. Comer E, Beaudoin JA, Kato N, et al. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents. J Med Chem. 2014;57(20):8496–502. https://doi.org/10.1021/jm500994n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J. 2017;284(16):2604–28. https://doi.org/10.1111/febs.14130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McNamara CW, Lee MC, Lim CS, Lim SH, Roland J, Simon O, et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature. 2013;504(7479):248–53. https://doi.org/10.1038/nature12782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rottmann M, McNamara C, Yeung BKS, Lee MCS, Zou B, Russell B, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010;329(5996):1175–80. https://doi.org/10.1126/science.1193225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baragaña B, Hallyburton I, Lee MCS, Norcross NR, Grimaldi R, Otto TD, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522(7556):315–20. https://doi.org/10.1038/nature14451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Phillips MA, Lotharius J, Marsh K, White J, Dayan A, White KL, et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med. 2015;7(296):296ra111. https://doi.org/10.1126/scitranslmed.aaa6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Coelho CH, Doritchamou JYA, Zaidi I, Duffy PE. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccin. 2017;2:34. https://doi.org/10.1038/s41541-017-0035-3.

    Article  Google Scholar 

  116. Han L, Hudgens MG, Emch ME, Juliano JJ, Keeler C, Martinson F, et al. RTS,S/AS01 malaria vaccine efficacy is not modified by seasonal precipitation: results from a phase 3 randomized controlled trial in Malawi. Sci Rep. 2017;7(1):7200. https://doi.org/10.1038/s41598-017-07533-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, C.A., Pande, S., Shukla, P., Ranch, K., Al-Tabakha, M.M., Boddu, S.H.S. (2023). Antimalarial Drug Resistance: Trends, Mechanisms, and Strategies to Combat Antimalarial Resistance. In: Shegokar, R., Pathak, Y. (eds) Malarial Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-15848-3_3

Download citation

Publish with us

Policies and ethics