Skip to main content

Faba Bean Starch: Structure, Physicochemical Properties, Modification, and Potential Industrial Applications

  • Chapter
  • First Online:
Faba Bean: Chemistry, Properties and Functionality

Abstract

Faba bean (Vicia faba) is an underutilised leguminous crop that is rich in protein and carbohydrates with the potential to improve food and nutrition security globally. The beans are equally a good source of fibre, antioxidants, minerals and vitamins. Besides the nutritional value of the grains, Faba bean also contributes to maintaining the sustainability of agricultural systems through crop rotation for soil enrichment and in the symbiotic fixation of atmospheric nitrogen. The bulk of carbohydrate in the crop is starch, which may vary between approximately 33 and 48% depending on variety and extraction method. With the growing demand for new starch sources, Faba bean starch could serve as an alternative to conventional corn and potato starches. This chapter presents the physicochemical, thermal, structural, and in vitro digestibility properties of Faba bean starch. It also discusses the different modification methods used to enhance the thermal and physicochemical properties of the starch isolate, as well as the potential industrial applications. Future studies on the native and modified Faba bean starches are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal, V., Singh, N., Kamboj, S. S., & Brar, P. S. (2004). Some properties of seeds and starches separated from different Indian pea cultivars. Food Chemistry, 85(4), 585–590.

    Article  CAS  Google Scholar 

  • Ai, Y., Hasjim, J., & Jane, J.-l. (2013). Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydrate Polymers, 92(1), 120–127.

    Google Scholar 

  • Aina, A. J., Falade, K. O., Akingbala, J. O., & Titus, P. (2009). Physicochemical properties of twenty-one Caribbean sweet potato cultivars. International Journal of Food Science and Technology, 44(9), 1696–1704.

    Article  CAS  Google Scholar 

  • Almeida, R. L. J., Santos, N. C., Feitoza, J. V. F., da Silva, G. M., de Sousa Muniz, C. E., da Silva Eduardo, R., de Alcântara Ribeiro, V. H., de Alcântara Silva, V. M., & de Almeida Mota, M. M. (2022). Effect of heat-moisture treatment on the thermal, structural and morphological properties of Quinoa starch. Carbohydrate Polymer Technologies and Applications, 3, 100192.

    Article  CAS  Google Scholar 

  • Ambigaipalan, P., Hoover, R., Donner, E., Liu, Q., Jaiswal, S., Chibbar, R., Nantanga, K., & Seetharaman, K. (2011). Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Research International, 44(9), 2962–2974.

    Article  CAS  Google Scholar 

  • Ambigaipalan, P., Hoover, R., Donner, E., & Liu, Q. (2013). Retrogradation characteristics of pulse starches. Food Research International, 54(1), 203–212.

    Article  CAS  Google Scholar 

  • Ashogbon, A. O., & Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Stärke, 66(1–2), 41–57.

    Article  CAS  Google Scholar 

  • Bates, F. L., French, D., & Rundle, R. (1943). Amylose and amylopectin content of starches determined by their iodine complex formation. Journal of the American Chemical Society, 65(2), 142–148.

    Article  CAS  Google Scholar 

  • Bello-Pérez, L. A., Islas-Hernández, J. J., Rendón-Villalobos, J. R., Agama-Acevedo, E., Morales-Franco, L., & Tovar, J. (2007). In vitro starch digestibility of fresh and sun-dried faba beans (Vicia faba L.). Journal of the Science of Food and Agriculture, 87(8), 1517–1522.

    Google Scholar 

  • BeMiller, J. N. (2018). Physical modification of starch. In Starch in food (pp. 223–253). Elsevier.

    Google Scholar 

  • Berry, C. (1986). Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. Journal of Cereal Science, 4(4), 301–314.

    Article  CAS  Google Scholar 

  • Biliaderis, C. G. (1991). The structure and interactions of starch with food constituents. Canadian Journal of Physiology and Pharmacology, 69(1), 60–78.

    Article  CAS  PubMed  Google Scholar 

  • Bresciani, A., & Marti, A. (2019). Using pulses in baked products: Lights, shadows, and potential solutions. Foods, 8(10), 451.

    Article  CAS  PubMed Central  Google Scholar 

  • Buléon, A., Bizot, H., Delage, M. M., & Pontoire, B. (1987). Comparison of X-ray diffraction patterns and sorption properties of the hydrolyzed starches of potato, wrinkled and smooth pea, broad bean and wheat. Carbohydrate Polymers, 7(6), 461–482.

    Article  Google Scholar 

  • Chan, C. K., Fabek, H., Mollard, R. C., Jones, P. J., Tulbek, M. C., Chibbar, R. N., Gangola, M. P., Ramadoss, B. R., Sánchez-Hernández, D., & Anderson, G. H. (2019). Faba bean protein flours added to pasta reduce post-ingestion glycaemia, and increase satiety, protein content and quality. Food & Function, 10(11), 7476–7488.

    Google Scholar 

  • Cheetham, N. W., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284.

    Article  CAS  Google Scholar 

  • Chen, Q., Yu, H., Wang, L., ul Abdin, Z., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R. U., & Zhang, H. (2015). Recent progress in chemical modification of starch and its applications. RSC Advances, 5(83), 67459–67474.

    Article  CAS  Google Scholar 

  • Chinma, C. E., Abu, J. O., Asikwe, B. N., Sunday, T., & Adebo, O. A. (2021). Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. LWT-Food Science and Technology, 140, 110749.

    Article  CAS  Google Scholar 

  • Chiremba, C., Vandenberg, A., Smits, J., Samaranayaka, A., Lam, R., Hood-Niefer, S., & BioSciences, P. (2018). New opportunities for faba bean. Cereal Foods World, 63(5), 221–222.

    CAS  Google Scholar 

  • Chung, H.-J., & Liu, Q. (2012). Physicochemical properties and in vitro digestibility of flour and starch from pea (Pisum sativum L.) cultivars. International Journal of Biological Macromolecules, 50(1), 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H.-J., Hoover, R., & Liu, Q. (2009a). The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. International Journal of Biological Macromolecules, 44(2), 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H.-J., Liu, Q., & Hoover, R. (2009b). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436–447.

    Article  CAS  Google Scholar 

  • Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food Hydrocolloids, 23(6), 1527–1534.

    Article  CAS  Google Scholar 

  • Craig, S. A. (1989). Starch paste clarity. Cereal Chemistry, 66, 173–182.

    CAS  Google Scholar 

  • De Santis, C., Martin, S. A., Dehler, C. E., Iannetta, P. P., Leeming, D., & Tocher, D. R. (2016). Influence of dietary inclusion of a wet processed faba bean protein isolate on post-smolt Atlantic salmon (Salmo salar). Aquaculture, 465, 124–133.

    Article  Google Scholar 

  • Deng, F., Yang, F., Li, Q., Zeng, Y., Li, B., Zhong, X., Lu, H., Wang, L., Chen, H., & Chen, Y. (2021). Differences in starch structural and physicochemical properties and texture characteristics of cooked rice between the main crop and ratoon rice. Food Hydrocolloids, 116, 106643.

    Article  CAS  Google Scholar 

  • Dong, H., & Vasanthan, T. (2020). Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocolloids, 101, 105506.

    Article  CAS  Google Scholar 

  • Doublier. (1987). A rheological comparison of wheat, maize, faba bean and smooth pea starches. Journal of Cereal Science, 5(3), 247–262.

    Google Scholar 

  • El-Shimi, N. M., Luh, B., & Shehata, A. E. T. (1980). Changes in microstructure, starch granules and sugars of germinating broad beans. Journal of Food Science, 45(6), 1652–1657.

    Article  CAS  Google Scholar 

  • Falade, K. O., & Okafor, C. A. (2013). Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches. Food Hydrocolloids, 30(1), 173–181.

    Article  CAS  Google Scholar 

  • Farhat, I. A., Protzmann, J., Becker, A., Vallès-Pàmies, B., Neale, R., & Hill, S. E. (2001). Effect of the extent of conversion and retrogradation on the digestibility of potato starch. Starch-Stärke, 53(9), 431–436.

    Article  CAS  Google Scholar 

  • Forsyth, J. L., Ring, S. G., Noel, T. R., Parker, R., Cairns, P., Findlay, K., & Shewry, P. R. (2002). Characterization of starch from tubers of yam bean (Pachyrhizus ahipa). Journal of Agricultural and Food Chemistry, 50(2), 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, V. P., & Zhou, Z. (2014). Food demand and the food security challenge with rapid economic growth in the emerging economies of India and China. Food Research International, 63, 108–124.

    Article  Google Scholar 

  • Gangola, M. P., Ramadoss, B. R., Jaiswal, S., Chan, C., Mollard, R., Fabek, H., Tulbek, M., Jones, P., Sanchez-Hernandez, D., & Anderson, G. H. (2021). Faba bean meal, starch or protein fortification of durum wheat pasta differentially influence noodle composition, starch structure and in vitro digestibility. Food Chemistry, 349, 129167.

    Article  CAS  PubMed  Google Scholar 

  • Gangola, M. P., Ramadoss, B. R., Jaiswal, S., Fabek, H., Tulbek, M., Anderson, G. H., & Chibbar, R. N. (2022). Nutritional composition and in vitro starch digestibility of crackers supplemented with faba bean whole flour, starch concentrate, protein concentrate and protein isolate. Foods, 11(5), 645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Vasanthan, T., & Hoover, R. (2009). Isolation and characterization of high-purity starch isolates from regular, waxy, and high-amylose hulless barley grains. Cereal Chemistry, 86(2), 157–163.

    Article  CAS  Google Scholar 

  • Guillon, F., & Champ, M. M.-J. (2002). Carbohydrate fractions of legumes: Uses in human nutrition and potential for health. British Journal of Nutrition, 88, S293–S306.

    Article  CAS  PubMed  Google Scholar 

  • Gunasekera, S. U., Stoddard, F., & Marshall, D. (1999). Variation in faba bean amylose content. Starch-Stärke, 51(7), 259–262.

    Article  CAS  Google Scholar 

  • Haase, N. U., & Shi, H. L. (1991). A characterization of faba bean starch (Vicia faba L.). Starch-Stärke, 43(6), 205–208.

    Article  CAS  Google Scholar 

  • Han, Z., Zeng, X.-a., Zhang, B.-s., & Yu, S.-j. (2009a). Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. Journal of Food Engineering, 93(3), 318–323.

    Article  CAS  Google Scholar 

  • Han, Z., Zeng, X. A., Yu, S. J., Zhang, B. S., & Chen, X. D. (2009b). Effects of pulsed electric fields (PEF) treatment on physicochemical properties of potato starch. Innovative Food Science and Emerging Technologies, 10(4), 481–485.

    Article  CAS  Google Scholar 

  • Haq, F., Yu, H., Wang, L., Teng, L., Haroon, M., Khan, R. U., Mehmood, S., Ullah, R. S., Khan, A., & Nazir, A. (2019). Advances in chemical modifications of starches and their applications. Carbohydrate Research, 476, 12–35.

    Article  CAS  PubMed  Google Scholar 

  • Hizukuri, S., Kaneko, T., & Takeda, Y. (1983). Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochimica et Biophysica Acta -General Subjects, 760(1), 188–191.

    Article  CAS  Google Scholar 

  • Hood-Niefer, S. D., Warkentin, T. D., Chibbar, R. N., Vandenberg, A., & Tyler, R. T. (2012). Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean. Journal of the Science of Food and Agriculture, 92(1), 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Hoover, R. (2000). Acid-treated starches. Food Reviews International, 16(3), 369–392.

    Article  CAS  Google Scholar 

  • Hoover, R., & Sosulski, F. (1986). Effect of cross-linking on functional properties of legume starches. Starch-Stärke, 38(5), 149–155.

    Article  CAS  Google Scholar 

  • Hoover, R., Li, Y., Hynes, G., & Senanayake, N. (1997). Physicochemical characterization of mung bean starch. Food Hydrocolloids, 11(4), 401–408.

    Article  CAS  Google Scholar 

  • Hoover, R., Hughes, T., Chung, H., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food Research International, 43(2), 399–413.

    Article  CAS  Google Scholar 

  • Hörtenhuber, S. J., Lindenthal, T., & Zollitsch, W. (2011). Reduction of greenhouse gas emissions from feed supply chains by utilizing regionally produced protein sources: The case of Austrian dairy production. Journal of the Science of Food and Agriculture, 91(6), 1118–1127.

    Article  PubMed  Google Scholar 

  • Huang, J., Schols, H. A., van Soest, J. J., Jin, Z., Sulmann, E., & Voragen, A. G. (2007). Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches. Food Chemistry, 101(4), 1338–1345.

    Article  CAS  Google Scholar 

  • Iannetta, P. P., James, E. K., Hawes, C., del Egido, L. L., Karley, A., Olukosi, O., Houdijk, J., Crampton, V., Moench, M., & Palomba, G. (2015). Enhancing the economic potential of beans using Vicia faba L.: Crop performance and the use of air-classified grain components in animal feeds and brewing. Legume Perspectives, 8.

    Google Scholar 

  • Imberty, A., & Perez, S. (1988). A revisit to the three-dimensional structure of B-type starch. Biopolymers, 27(8), 1205–1221.

    Article  CAS  Google Scholar 

  • Jane, J. (1995). Starch properties, modifications, and applications. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 32(4), 751–757.

    Article  Google Scholar 

  • Jane, J., Chen, Y., Lee, L., McPherson, A., Wong, K., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76(5), 629–637.

    Article  CAS  Google Scholar 

  • Jiang, Z.-Q., Wang, J., Stoddard, F., Salovaara, H., & Sontag-Strohm, T. (2020). Preparation and characterization of emulsion gels from whole faba bean flour. Foods, 9(6), 755.

    Article  PubMed Central  Google Scholar 

  • Jimenez, M., Lobo, M., & Sammán, N. (2019). Influence of germination of quinoa (Chenopodium quinoa) and amaranth (Amaranthus) grains on nutritional and techno–functional properties of their flours. Journal of Food Composition and Analysis, 84, 103290.

    Article  CAS  Google Scholar 

  • Jing, Q., Spiertz, J., Hengsdijk, H., Van Keulen, H., Cao, W., & Dai, T. (2010). Adaptation and performance of rice genotypes in tropical and subtropical environments. NJAS: Wageningen Journal of Life Sciences, 57(2), 149–157.

    Google Scholar 

  • Kaur, M., & Sandhu, K. S. (2010). In vitro digestibility, structural and functional properties of starch from pigeon pea (Cajanus cajan) cultivars grown in India. Food Research International, 43(1), 263–268.

    Article  CAS  Google Scholar 

  • Kaur, M., Sandhu, K. S., & Lim, S.-T. (2010). Microstructure, physicochemical properties and in vitro digestibility of starches from different Indian lentil (Lens culinaris) cultivars. Carbohydrate Polymers, 79(2), 349–355.

    Article  CAS  Google Scholar 

  • Kaur, M., Sandhu, K. S., Singh, N., & Lim, S. T. (2011). Amylose content, molecular structure, physicochemical properties and in vitro digestibility of starches from different mung bean (Vigna radiata L.) cultivars. Starch-Stärke, 63(11), 709–716.

    Article  CAS  Google Scholar 

  • Kim, J., Zhang, C., & Shin, M. (2015). Forming rice starch gels by adding retrograded and cross-linked resistant starch prepared from rice starch. Food Science and Biotechnology, 24(3), 835–841.

    Article  CAS  Google Scholar 

  • Kim, Y.-y., Woo, K. S., & Chung, H.-J. (2018). Starch characteristics of cowpea and mungbean cultivars grown in Korea. Food Chemistry, 263, 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. Y., Lee, S., & Lee, H. G. (2010). Effect of the degree of enzymatic hydrolysis on the physicochemical properties and in vitro digestibility of rice starch. Food Science and Biotechnology, 19(5), 1333–1340.

    Article  CAS  Google Scholar 

  • Leinonen, I., MacLeod, M., & Bell, J. (2018). Effects of alternative uses of distillery by-products on the greenhouse gas emissions of Scottish malt whisky production: A system expansion approach. Sustainability, 10(5), 1473.

    Article  Google Scholar 

  • Li, L., Yuan, T. Z., Setia, R., Raja, R. B., Zhang, B., & Ai, Y. (2019). Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches. Food Chemistry, 276, 599–607.

    Article  CAS  PubMed  Google Scholar 

  • Lienhardt, T., Black, K., Saget, S., Costa, M. P., Chadwick, D., Rees, R. M., Williams, M., Spillane, C., Iannetta, P. M., & Walker, G. (2019). Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe’s protein deficit and mitigate climate change. Environment International, 130, 104870.

    Article  PubMed  Google Scholar 

  • Lintner, C. (1886). Studien über diastase. Journal für Praktische Chemie, 34(1), 378–394.

    Article  Google Scholar 

  • Liu, C., Wang, S., Copeland, L., & Wang, S. (2015). Physicochemical properties and in vitro digestibility of starches from field peas grown in China. LWT-Food Science and Technology, 64(2), 829–836.

    Article  CAS  Google Scholar 

  • Lorenz, K. (1979). The starch of the fababean (Vicia faba). Comparison with wheat and corn starch. Starch-Stärke, 31(6), 181–184.

    Article  CAS  Google Scholar 

  • Maaran, S., Hoover, R., Donner, E., & Liu, Q. (2014). Composition, structure, morphology and physicochemical properties of lablab bean, navy bean, rice bean, tepary bean and velvet bean starches. Food Chemistry, 152, 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Markham, G. (1994). The English housewife. McGill-Queen’s Press-MQUP.

    Google Scholar 

  • Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226–1236.

    Article  CAS  PubMed  Google Scholar 

  • Mbougueng, P., Tenin, D., Scher, J., & Tchiégang, C. (2012). Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. Journal of Food Engineering, 108(2), 320–326.

    Article  CAS  Google Scholar 

  • Meuser, F., Pahne, N., & Möller, M. (1995). Extraction of high amylose starch from wrinkled peas. Starch-Stärke, 47(2), 56–61.

    Article  CAS  Google Scholar 

  • Morad, M., Leung, H., Hsu, D., & Finney, P. (1980a). Effect of germination on physicochemical and bread-baking properties of yellow pea, lentil and faba bean flours and starches. Cereal Chemistry, 57(6), 390–396.

    CAS  Google Scholar 

  • Morad, M., Leung, H., Hsu, D., & Finney, P. (1980b). Lentil, and faba bean flours and starches. Cereal Chemistry, 57(6), 390–396.

    CAS  Google Scholar 

  • Morrison, W. R., & Laignelet, B. (1983). An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. Journal of Cereal Science, 1(1), 9–20.

    Article  CAS  Google Scholar 

  • Multari, S., Stewart, D., & Russell, W. R. (2015). Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Comprehensive Reviews in Food Science and Food Safety, 14(5), 511–522.

    Article  Google Scholar 

  • Niba, L. L. (2002). Resistant starch: A potential functional food ingredient. Nutrition & Food Science.

    Google Scholar 

  • Nuwamanya, E., Baguma, Y., Wembabazi, E., & Rubaihayo, P. (2011). A comparative study of the physicochemical properties of starches from root, tuber and cereal crops. African Journal of Biotechnology, 10(56), 12018–12030.

    CAS  Google Scholar 

  • Ohwada, N., Ishibashi, K.-i., Hironaka, K., & Yamamoto, K. (2003). Physicochemical properties of mungbean starch. Journal of Applied Glycoscience, 50(4), 481–485.

    Article  CAS  Google Scholar 

  • Osorio-Díaz, P., Tovar, J., Paredes-López, O., Acosta-Gallegos, J. A., & Bello-Pérez, L. A. (2005). Chemical composition and in vitro starch bioavailability of Phaseolus vulgaris (L) cv Mayocoba. Journal of the Science of Food and Agriculture, 85(3), 499–504.

    Article  Google Scholar 

  • Oyeyinka, S. A., & Oyeyinka, A. T. (2018). A review on isolation, composition, physicochemical properties and modification of Bambara groundnut starch. Food Hydrocolloids, 75, 62–71.

    Article  CAS  Google Scholar 

  • Oyeyinka, S. A., Singh, S., & Amonsou, E. O. (2017). Physicochemical properties of starches extracted from bambara groundnut landraces. Starch-Stärke, 69(3–4), 1600089.

    Article  Google Scholar 

  • Oyeyinka, S. A., Adegoke, R., Oyeyinka, A. T., Salami, K. O., Olagunju, O. F., Kolawole, F. L., Joseph, J. K., & Bolarinwa, I. F. (2018). Effect of annealing on the functionality of Bambara groundnut (Vigna subterranea) starch–palmitic acid complex. International Journal of Food Science and Technology, 53(2), 549–555.

    Article  CAS  Google Scholar 

  • Oyeyinka, S. A., Umaru, E., Olatunde, S. J., & Joseph, J. K. (2019). Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Bioscience, 28, 36–41.

    Article  CAS  Google Scholar 

  • Oyeyinka, S. A., Kayitesi, E., Adebo, O. A., Oyedeji, A. B., Ogundele, O. M., Obilana, A. O., & Njobeh, P. B. (2021a). A review on the physicochemical properties and potential food applications of cowpea (Vigna unguiculata) starch. International Journal of Food Science & Technology, 56(1), 52–60.

    Google Scholar 

  • Oyeyinka, S. A., Singh, S., & Amonsou, E. O. (2021b). A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes. Food Chemistry, 349, 129165.

    Article  CAS  PubMed  Google Scholar 

  • Oyeyinka, S. A., Akintayo, O. A., Adebo, O. A., Kayitesi, E., & Njobeh, P. B. (2021c). A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. International Journal of Biological Macromolecules, 176, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Oyeyinka, S. A., Oyedeji, A. B., Ogundele, O. M., Adebo, O. A., Njobeh, P. B., & Kayitesi, E. (2021d). Infrared heating under optimized conditions enhanced the pasting and swelling behaviour of cowpea starch. International Journal of Biological Macromolecules, 184, 678–688.

    Google Scholar 

  • Pérez, E., Gibert, O., Rolland-Sabaté, A., Jiménez, Y., Sánchez, T., Giraldo, A., Pontoire, B., Guilois, S., Lahon, M.-C., & Reynes, M. (2011). Physicochemical, functional, and macromolecular properties of waxy yam starches discovered from “Mapuey”(Dioscorea trifida) genotypes in the Venezuelan Amazon. Journal of Agricultural and Food Chemistry, 59(1), 263–273.

    Article  PubMed  Google Scholar 

  • Persson, U. M., Henders, S., & Cederberg, C. (2014). A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities–applications to Brazilian beef and soy, Indonesian palm oil. Global Change Biology, 20(11), 3482–3491.

    Article  PubMed  Google Scholar 

  • Piecyk, M., & Domian, K. (2021). Effects of heat–moisture treatment conditions on the physicochemical properties and digestibility of field bean starch (Vicia faba var. minor). International Journal of Biological Macromolecules, 182, 425–433.

    Article  CAS  PubMed  Google Scholar 

  • Piecyk, M., Drużyńska, B., Worobiej, E., Wołosiak, R., & Ostrowska-Ligęza, E. (2013). Effect of hydrothermal treatment of runner bean (Phaseolus coccineus) seeds and starch isolation on starch digestibility. Food Research International, 50(1), 428–437.

    Article  CAS  Google Scholar 

  • Pietrzyk, S., Fortuna, T., Juszczak, L., Gałkowska, D., Królikowska, K., & Zięba, K. (2015). Effect of complexation of oxidised corn starch with mineral elements on physicochemical properties. International Journal of Food Science & Technology, 50(4), 934–941.

    Article  CAS  Google Scholar 

  • Pukkahuta, C., Shobsngob, S., & Varavinit, S. (2007). Effect of osmotic pressure on starch: New method of physical modification of starch. Starch-Stärke, 59(2), 78–90.

    Article  CAS  Google Scholar 

  • Punia, S., Dhull, S. B., Sandhu, K. S., & Kaur, M. (2019). Faba bean ( Vicia faba) starch: Structure, properties, and in vitro digestibility—A review. Legume Science, 1(1), e18.

    Article  CAS  Google Scholar 

  • Ratnayake, W., Hoover, R., Shahidi, F., Perera, C., & Jane, J. (2001). Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chemistry, 74(2), 189–202.

    Article  CAS  Google Scholar 

  • Reichert, R., & Youngs, C. (1978). Starch fractions from air-classified field peas. Cereal Chemistry, 55(4), 469–480.

    CAS  Google Scholar 

  • Ring, S. (1985). Some studies on starch gelation. Starch-Stärke, 37(3), 80–83.

    Article  CAS  Google Scholar 

  • Rosin, P. M., Lajolo, F. M., & Menezes, E. W. (2002). Measurement and characterization of dietary starches. Journal of Food Composition and Analysis, 15(4), 367–377.

    Article  CAS  Google Scholar 

  • Schader, C., Muller, A., Scialabba, N. E.-H., Hecht, J., Isensee, A., Erb, K.-H., Smith, P., Makkar, H. P., Klocke, P., & Leiber, F. (2015). Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal of the Royal Society Interface, 12(113), 20150891.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, V., Kaur, M., Sandhu, K. S., & Godara, S. K. (2020). Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International Journal of Biological Macromolecules, 159, 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Sirivongpaisal, P. (2008). Structure and functional properties of starch and flour from bambarra groundnut. Songklanakarin Journal of Science and Technology, 30, 51–56.

    Google Scholar 

  • Sit, N., Misra, S., & Deka, S. C. (2013). Physicochemical, functional, textural and colour characteristics of starches isolated from four taro cultivars of North-East India. Starch-Stärke, 65(11–12), 1011–1021.

    Article  CAS  Google Scholar 

  • Sofi, B. A., Wani, I. A., Masoodi, F. A., Saba, I., & Muzaffar, S. (2013). Effect of gamma irradiation on physicochemical properties of broad bean (Vicia faba L.) starch. LWT-Food Science and Technology, 54(1), 63–72.

    Article  CAS  Google Scholar 

  • Song, X.-M., & Liu, J.-F. (2013). The textural properties of broad bean starch. Food Science and Technology, 6.

    Google Scholar 

  • Sozer, N., Melama, L., Silbir, S., Rizzello, C. G., Flander, L., & Poutanen, K. (2019). Lactic acid fermentation as a pre-treatment process for faba bean flour and its effect on textural, structural and nutritional properties of protein-enriched gluten-free faba bean breads. Foods, 8(10), 431.

    Article  CAS  PubMed Central  Google Scholar 

  • Srichuwong, S., & Jane, J.-I. (2007). Physicochemical properties of starch affected by molecular composition and structures: A review. Food Science and Biotechnology, 16(5), 663–674.

    CAS  Google Scholar 

  • Tanner, R. D., & Hussain, S. S. (1979). Kudzu (Pueraria lobata) root starch as a substrate for the lysine-enriched baker’s yeast and ethanol fermentation process. Journal of Agricultural and Food Chemistry, 27(1), 22–27.

    Article  CAS  Google Scholar 

  • Tanner, R. D., Souki, N. T., & Russell, R. M. (1977). A fermentation process for producing both ethanol and lysine-enriched yeast. Biotechnology and Bioengineering, 19(1), 27–42.

    Article  CAS  PubMed  Google Scholar 

  • Tazrart, K., Lamacchia, C., Zaidi, F., & Haros, M. (2016). Nutrient composition and in vitro digestibility of fresh pasta enriched with Vicia faba. Journal of Food Composition and Analysis, 47, 8–15.

    Article  CAS  Google Scholar 

  • Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry, 67(6), 551–557.

    CAS  Google Scholar 

  • Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165.

    Article  CAS  Google Scholar 

  • Thapnak, C., Rungsardthong, V., Vatanyoopaisarn, S., Vimolchalao, C., Puttanlek, C., Uttapap, D., Wongsa, J., & Thumthanaruk, B. (2019). Effect of barrel temperatures and starch type on some properties of extruded glass noodles. In IOP Conference series: Earth and environmental science (Vol. 346, p. 012050). IOP Publishing.

    Google Scholar 

  • Van Der Maarel, M. J., Van der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155.

    Article  PubMed  Google Scholar 

  • Van Der Maarel, M. J., Capron, I., Euverink, G. J. W., Bos, H. T., Kaper, T., Binnema, D. J., & Steeneken, P. A. (2005). A novel thermoreversible gelling product made by enzymatic modification of starch. Starch-Stärke, 57(10), 465–472.

    Article  Google Scholar 

  • Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., & da Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 221, 1546–1559.

    Article  CAS  PubMed  Google Scholar 

  • Walker, G., Ianieri, J., Moench, M., Palomba, G., & Iannetta, P. (2015). Potential of faba bean starch for distilled spirit production. In 5th worldwide distilled spirits conference: Future challenges, new solutions (pp. 13–17). Context.

    Google Scholar 

  • Wang, S., & Copeland, L. (2015). Effect of acid hydrolysis on starch structure and functionality: A review. Critical Reviews in Food Science and Nutrition, 55(8), 1081–1097.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Chung, D., Seib, P., & Kim, Y. (2000). Optimum steeping process for wet milling of sorghum. Cereal Chemistry, 77(4), 478–483.

    Article  CAS  Google Scholar 

  • Wang, N., Warkentin, T. D., Vandenberg, B., & Bing, D. (2014). Physicochemical properties of starches from various pea and lentil varieties, and characteristics of their noodles prepared by high temperature extrusion. Food Research International, 55, 119–127.

    Article  Google Scholar 

  • Wang, Z., Mhaske, P., Farahnaky, A., Kasapis, S., & Majzoobi, M. (2022). Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocolloids, 129, 107542.

    Article  CAS  Google Scholar 

  • Wani, I. A., Sogi, D. S., Hamdani, A. M., Gani, A., Bhat, N. A., & Shah, A. (2016). Isolation, composition, and physicochemical properties of starch from legumes: A review. Starch-Stärke, 68(9–10), 834–845.

    Article  CAS  Google Scholar 

  • Weightman, R., Cottrill, B., Wiltshire, J., Kindred, D., & Sylvester-Bradley, R. (2011). Opportunities for avoidance of land-use change through substitution of soya bean meal and cereals in European livestock diets with bioethanol coproducts. GCB Bioenergy, 3(2), 158–170.

    Article  Google Scholar 

  • Wongsagonsup, R., Pujchakarn, T., Jitrakbumrung, S., Chaiwat, W., Fuongfuchat, A., Varavinit, S., Dangtip, S., & Suphantharika, M. (2014). Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydrate Polymers, 101, 656–665.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., Shu, Q., Wang, Z., & Xia, Y. (2002). Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice. Radiation Physics and Chemistry, 65(1), 79–86.

    Article  CAS  Google Scholar 

  • Young, J. L., & Varner, J. (1959). Enzyme synthesis in the cotyledons of germinating seeds. Archives of Biochemistry and Biophysics, 84(1), 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Tian, X., Wang, P., Jiang, H., & Li, W. (2019). Compositional, morphological, and physicochemical properties of starches from red adzuki bean, chickpea, faba bean, and baiyue bean grown in China. Food Science and Nutrition, 7(8), 2485–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Hoover, R., & Liu, Q. (2004). Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydrate Polymers, 57(3), 299–317.

    Article  CAS  Google Scholar 

  • Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456–480.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, F., Cai, Y.-Z., Sun, M., & Corke, H. (2009). Effect of phytochemical extracts on the pasting, thermal, and gelling properties of wheat starch. Food Chemistry, 112(4), 919–923.

    Article  CAS  Google Scholar 

  • Zia-ud-Din, Xiong, H., & Fei, P. (2017). Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2691–2705.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson A. Oyeyinka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akintayo, O.A., Zhou, S.J., Karim, O.R., Grassby, T., Oyeyinka, S.A. (2022). Faba Bean Starch: Structure, Physicochemical Properties, Modification, and Potential Industrial Applications. In: Punia Bangar, S., Bala Dhull, S. (eds) Faba Bean: Chemistry, Properties and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-031-14587-2_9

Download citation

Publish with us

Policies and ethics