Skip to main content

Neuroinnovation in Medicine: History and Future

  • Chapter
  • First Online:
Ethics and Clinical Neuroinnovation
  • 288 Accesses

Abstract

Discoveries in fundamental neuroscience are increasingly driving the development of innovative, rationally designed therapies in medicine. Collaborative efforts led by a consortium of researchers forming the Human Connectome Project have created highly accurate, high-resolution maps of human brain circuitry, fundamentally advancing our models of brain function from simplistic localization to dynamic coordination of whole-brain circuits. Increasing knowledge of brain circuitry, combined with development of tools to safely modulate brain activity, has given rise to the new field of interventional psychiatry. Rationally designed, circuit-based therapies utilizing deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS) show great promise in treating treatment-resistant depression and obsessive-compulsive disorder (OCD). Development is proceeding rapidly in identifying new targets to treat other conditions, including post-traumatic stress disorder (PTSD) and substance use disorders. Looking forward, the future of clinical neuroinnovation is bright. Medicine will benefit from current rich research pipelines developing increasingly precise and safe methods for neuromodulation, for example, focused ultrasound with nanoparticles. The increasing effectiveness, safety, and precision of therapeutic neuromodulation will at some point undoubtedly raise ethical issues related to neurodiversity and neuroenhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaku M. The Golden age of neuroscience has arrived. Wall Street J. 2014;20

    Google Scholar 

  2. Behrens TE, Sporns O. Human connectomics. Curr Opin Neurobiol. 2012;22(1):144–53.

    Article  CAS  Google Scholar 

  3. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263–8.

    Article  CAS  Google Scholar 

  4. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  Google Scholar 

  5. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325(8437):1106–7.

    Article  Google Scholar 

  6. Williams NR, Taylor JJ, Kerns S, Short EB, Kantor EM, George MS. Interventional psychiatry: why now? J Clin Psychiatry. 2014;75(8):895.

    Article  Google Scholar 

  7. Lapidus KA, Kopell BH, Ben-Haim S, Rezai AR, Goodman WK. History of psychosurgery: a psychiatrist's perspective. World Neurosurg. 2013;80(3–4):S27–e1.

    Google Scholar 

  8. Glickstein M. Golgi and Cajal: the neuron doctrine and the 100th anniversary of the 1906 Nobel prize. Curr Biol. 2006;16(5):R147–51.

    Article  CAS  Google Scholar 

  9. Stahl SM. Mechanism of action of serotonin selective reuptake inhibitors: serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord. 1998;51(3):215–35.

    Article  CAS  Google Scholar 

  10. Vaswani M, Linda FK, Ramesh S. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(1):85–102.

    Article  CAS  Google Scholar 

  11. Miller DD, Caroff SN, Davis SM, Rosenheck RA, McEvoy JP, Saltz BL, Riggio S, Chakos MH, Swartz MS, Keefe RS, Stroup TS. Extrapyramidal side-effects of antipsychotics in a randomised trial. Br J Psychiatry. 2008;193(4):279–88.

    Article  Google Scholar 

  12. Sinyor M, Schaffer A, Levitt A. The sequenced treatment alternatives to relieve depression (STAR* D) trial: a review. Can J Psychiatry. 2010;55(3):126–35.

    Article  Google Scholar 

  13. Rutten GJ. The Broca-Wernicke doctrine: a historical and clinical perspective on localization of language functions. Berlin: Springer; 2017.

    Book  Google Scholar 

  14. Shorvon SD. A history of neuroimaging in epilepsy 1909–2009. Epilepsia. 2009;50:39–49.

    Article  Google Scholar 

  15. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114(1):89–98.

    Article  CAS  Google Scholar 

  16. Small SA, Heeger DJ. Functional imaging of cognition. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. New York: McGraw-Hill; 2012. p. 426–42.

    Google Scholar 

  17. Raichle ME. In: Cabeza R, Kingstone A, editors. Functional neuroimaging: a historical and physiological perspective. In handbook of functional neuroimaging of cognition. Cambridge: MIT Press; 2006. p. 3–20.

    Google Scholar 

  18. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    Article  CAS  Google Scholar 

  19. Savage N. The world's most powerful MRI takes shape. IEEE Spectr. 2013;50(11):11–2.

    Article  Google Scholar 

  20. Fox PT, Mintun MA, Raichle ME, Herscovitch P. A noninvasive approach to quantitative functional brain mapping with H215O and positron emission tomography. J Cereb Blood Flow Metab. 1984;4(3):329–33.

    Article  CAS  Google Scholar 

  21. Raichle ME. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci. 1998;95(3):765–72.

    Article  CAS  Google Scholar 

  22. Rosen BR, Belliveau JW, Aronen HJ, Kennedy D, Buchbinder BR, Fischman A, Gruber M, Glas J, Weisskoff RM, Cohen MS, Hochberg FH. Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med. 1991;22(2):293–9.

    Article  CAS  Google Scholar 

  23. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff R, Cohen MS, Vevea JM, Brady TJ, Rosen BR. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991;254(5032):716–9.

    Article  CAS  Google Scholar 

  24. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci. 1990;87(24):9868–72.

    Article  CAS  Google Scholar 

  25. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci. 1936;22(4):210–6.

    Article  CAS  Google Scholar 

  26. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25(2):390–7.

    Article  CAS  Google Scholar 

  27. Frahm J, Bruhn H, Merboldt KD, Hänicke W. Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging. 1992;2(5):501–5.

    Article  CAS  Google Scholar 

  28. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci. 1992;89(12):5675–9.

    Article  CAS  Google Scholar 

  29. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci. 1992;89(13):5951–5.

    Article  CAS  Google Scholar 

  30. Kandel ER, Hudspeth AJ. The brain and behavior. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. New York: McGraw-Hill; 2012. p. 5–20.

    Google Scholar 

  31. Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Lafayette; 1909.

    Google Scholar 

  32. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Neurol. 1954;4(6):1891–1976.

    Google Scholar 

  33. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962;160(1):106–54.

    Article  CAS  Google Scholar 

  34. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28(5):597–613.

    Article  CAS  Google Scholar 

  35. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS. A direct demonstration of functional specialization in human visual cortex. J Neurosci. 1991;11(3):641–9.

    Article  CAS  Google Scholar 

  36. Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72.

    Article  CAS  Google Scholar 

  37. Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013;77(3):406–24.

    Article  CAS  Google Scholar 

  38. Bishop KM, Goudreau G, O'Leary DD. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science. 2000;288(5464):344–9.

    Article  CAS  Google Scholar 

  39. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT. A mesoscale connectome of the mouse brain. Nature. 2014;508(7495):207–14.

    Article  CAS  Google Scholar 

  40. Glasser MF, Smith SM, Marcus DS, Andersson JL, Auerbach EJ, Behrens TE, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC. The human connectome project's neuroimaging approach. Nat Neurosci. 2016;19(9):1175.

    Article  Google Scholar 

  41. George MS, Ketter TA, Post RM. Prefrontal cortex dysfunction in clinical depression. Depression. 1994a;2(2):59–72.

    Article  Google Scholar 

  42. George MS, Kellner CH, Bernstein H, Goust JM. A magnetic resonance imaging investigation into mood disorders in multiple sclerosis: a pilot study. J Nerv Ment Dis. 1994b;182:410–2.

    Article  CAS  Google Scholar 

  43. Mayberg HS. Frontal lobe dysfunction in secondary depression. J Neuropsychiatry Clin Neurosci. 1994;6(4):428.

    Article  CAS  Google Scholar 

  44. Coffey CE, Wilkinson WE, Weiner RD, Djang WT, Webb MC, Figiel GS, Spritzer CE. Quantitative cerebral anatomy in depression: a controlled magnetic resonance imaging study. Arch Gen Psychiatry. 1993;50(1):7–16.

    Article  CAS  Google Scholar 

  45. Morris PLP, Robinson RG, Raphael B, Hopwood MJ. Lesion location and poststroke depression. J Neuropsychiatry Clin Neurosci. 1996;8(4):399–403. https://doi.org/10.1176/jnp.8.4.399.

    Article  CAS  Google Scholar 

  46. Robinson RG, Szetela B. Mood change following left hemispheric brain injury. Ann Neurol. 1981;9(5):447–53.

    Article  CAS  Google Scholar 

  47. Robinson RG, Kubos KL, Starr LB, Rao K, Price TR. Mood disorders in stroke patients: importance of location of lesion. Brain. 1984;107(1):81–93.

    Article  Google Scholar 

  48. Vataja R, Leppävuori A, Pohjasvaara T, Mäntylä R, Aronen HJ, Salonen O, Erkinjuntti T. Poststroke depression and lesion location revisited. J Neuropsychiatry Clin Neurosci. 2004;16(2):156–62.

    Google Scholar 

  49. Zhang Y, Zhao H, Fang Y, Wang S, Zhou H. The association between lesion location, sex and poststroke depression: meta-analysis. Brain Behav. 2017;7:e00788.

    Article  Google Scholar 

  50. Baxter LR, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry. 1989;46(3):243–50.

    Article  CAS  Google Scholar 

  51. Martinot JL, Hardy P, Feline A, Huret JD, Mazoyer B, Attar-Levy D, Pappata S, Syrota A. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry. 1990;147(10):1313–7.

    Article  CAS  Google Scholar 

  52. Mottaghy FM, Keller CE, Gangitano M, Ly J, Thall M, Parker JA, Pascual-Leone A. Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res Neuroimaging. 2002;115(1–2):1–4.

    Article  Google Scholar 

  53. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12(9):3628–41.

    Article  CAS  Google Scholar 

  54. Drevets WC. Prefrontal cortical-amygdalar metabolism in major depression. Ann N Y Acad Sci. 1999;877(1):614–37.

    Article  CAS  Google Scholar 

  55. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830–43.

    Google Scholar 

  56. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatr. 1999;156(5):675–82.

    Article  CAS  Google Scholar 

  57. Botteron KN, Raichle ME, Drevets WC, Heath AC, Todd RD. Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol Psychiatry. 2002;51(4):342–4.

    Article  Google Scholar 

  58. Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386(6627):824–7.

    Article  CAS  Google Scholar 

  59. Öngür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci. 1998;95(22):13290–5.

    Article  Google Scholar 

  60. George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P, Post RM. Brain activity during transient sadness and happiness in healthy women. Am J Psychiatr. 1995a;152(3):341–51.

    Article  CAS  Google Scholar 

  61. George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Hallett M, Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 1995b;6(14):1853–6.

    Article  CAS  Google Scholar 

  62. Pardo JV, Pardo PJ, Raichle ME. Neural correlates of self-induced dysphoria. Am J Psychiatry. 1993;150(5):713–9.

    Article  CAS  Google Scholar 

  63. Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O, Bain EE, Luckenbaugh DA, Herscovitch P, Charney DS, Drevets WC. Neural and behavioral responses to tryptophan depletion in Unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry. 2004;61(8):765–73.

    Article  CAS  Google Scholar 

  64. Talbot PS, Cooper SJ. Anterior cingulate and subgenual prefrontal blood flow changes following tryptophan depletion in healthy males. Neuropsychopharmacology. 2006;31(8):1757–67.

    Article  CAS  Google Scholar 

  65. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62(5):429–37.

    Article  Google Scholar 

  66. Mayberg HS, Brannan SK, Mahurin RK, Jerabek PA, Brickman JS, Tekell JL, Silva JA, McGinnis S, Glass TG, Martin CC, Fox PT. Cingulate function in depression: a potential predictor of treatment response. Neuroreport. 1997;8(4):1057–61.

    Article  CAS  Google Scholar 

  67. Osuch EA, Ketter TA, Kimbrell TA, George MS, Benson BE, Herscovitch MW, Post RM. Regional cerebral metabolism associated with anxiety symptoms in affective disorder patients. Biol Psychiatry. 2000;48(10):1020–3.

    Article  CAS  Google Scholar 

  68. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527–44.

    Article  CAS  Google Scholar 

  69. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WE. Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry. 1992;149(4):538–43.

    Google Scholar 

  70. Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell C, Sackeim HA, Mann JJ. Decreased regional brain metabolism after ECT. Am J Psychiatr. 2001;158(2):305–8.

    Article  CAS  Google Scholar 

  71. Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996;84(2):203–14.

    Article  CAS  Google Scholar 

  72. Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol. 2003;13(6):696–706.

    Article  CAS  Google Scholar 

  73. Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments. EMBO Mol Med. 2019;11(4):e9575.

    Article  Google Scholar 

  74. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115(1):19–38.

    Article  CAS  Google Scholar 

  75. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.

    Article  Google Scholar 

  76. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, Lozano AM. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatr. 2011;168(5):502–10.

    Article  Google Scholar 

  77. Holtzheimer PE, Kelley ME, Gross RE, Filkowski MM, Garlow SJ, Barrocas A, Wint D, Craighead MC, Kozarsky J, Chismar R, Moreines JL. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch Gen Psychiatry. 2012;69(2):150–8.

    Article  Google Scholar 

  78. Crowell AL, Riva-Posse P, Holtzheimer PE, Garlow SJ, Kelley ME, Gross RE, Denison L, Quinn S, Mayberg HS. Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. Am J Psychiatr. 2019;176(11):949–56.

    Article  Google Scholar 

  79. Warden D, Rush AJ, Trivedi MH, Fava M, Wisniewski SR. The STAR*D project results: a comprehensive review of findings. Curr Psychiatry Rep. 2007;9(6):449–59.

    Article  Google Scholar 

  80. Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA, McClintock S, Slavin KV, Berman J, McKhann GM, Patil PG, Rittberg BR. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4(11):839–49.

    Article  Google Scholar 

  81. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011;17(3):297.

    Article  CAS  Google Scholar 

  82. Hamani C, Mayberg H, Snyder B, Giacobbe P, Kennedy S, Lozano AM. Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J Neurosurg. 2009;111(6):1209–15.

    Article  Google Scholar 

  83. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE, Chaturvedi A, Crowell AL, Garlow SJ, Rajendra JK, Mayberg HS. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76(12):963–9.

    Article  Google Scholar 

  84. Choi KS, Riva-Posse P, Gross RE, Mayberg HS. Mapping the “depression switch” during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 2015;72(11):1252–60.

    Article  Google Scholar 

  85. Scangos KW, Makhoul GS, Sugrue LP, Chang EF, Krystal AD. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat Med. 2021;27:229–31.

    Article  CAS  Google Scholar 

  86. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, McIntyre CC, Gross RE, Mayberg HS. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23(4):843–9.

    Article  CAS  Google Scholar 

  87. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65(4):267–75.

    Article  Google Scholar 

  88. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67(2):110–6.

    Article  Google Scholar 

  89. Schlaepfer TE, Bewernick BH, Kayser S, Mädler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry. 2013;73(12):1204–12.

    Article  Google Scholar 

  90. Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M, Taylor SF, Martis B, Giordani B. Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry. 2005;57(5):510–6.

    Article  Google Scholar 

  91. Greenberg BD, Gabriels LA, Malone DA, Rezai AR, Friehs GM, Okun MS, Shapira NA, Foote KD, Cosyns PR, Kubu CS, Malloy PF. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry. 2010;15(1):64–79.

    Article  CAS  Google Scholar 

  92. Luigjes JV, Van Den Brink W, Feenstra MV, Van Den Munckhof P, Schuurman PR, Schippers R, Mazaheri A, De Vries TJ, Denys D. Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry. 2012;17(6):572–83.

    Article  CAS  Google Scholar 

  93. Swann NC, de Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Ostrem JL, Chizeck HJ, Starr PA. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. 2018;15(4):046006.

    Article  Google Scholar 

  94. Haynes JD. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron. 2015;87(2):257–70.

    Article  CAS  Google Scholar 

  95. Shen FX. Neuroscience, mental privacy, and the law. Harv J Law Pub Poly. 2013;36:653.

    Google Scholar 

  96. Schott GD. Penfield's homunculus: a note on cerebral cartography. J Neurol Neurosurg Psychiatry. 1993;56(4):329.

    Article  CAS  Google Scholar 

  97. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.

    Article  CAS  Google Scholar 

  98. Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–3.

    Article  Google Scholar 

  99. Deng ZD, Lisanby SH, Peterchev AV. Coil design considerations for deep transcranial magnetic stimulation. Clin Neurophysiol. 2014;125(6):1202–12.

    Article  Google Scholar 

  100. Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol. 1989;74(6):458–62.

    Article  CAS  Google Scholar 

  101. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147–50.

    Article  CAS  Google Scholar 

  102. Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117(4):847–58.

    Article  Google Scholar 

  103. Chen RM, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–403.

    Article  CAS  Google Scholar 

  104. Chen R, Udupa K. Measurement and modulation of plasticity of the motor system in humans using transcranial magnetic stimulation. Motor control. 2009;13(4):442–53.

    Google Scholar 

  105. George MS. Whither TMS: a one-trick pony or the beginning of a Neuroscientific revolution? Am J Psychiatr. 2019;176(11):904–10.

    Article  Google Scholar 

  106. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, McDonald WM, Avery D, Fitzgerald PB, Loo C, Demitrack MA. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62(11):1208–16.

    Article  Google Scholar 

  107. George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, Anderson B, Nahas Z, Bulow P, Zarkowski P, Holtzheimer PE. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry. 2010;67(5):507–16.

    Article  Google Scholar 

  108. Guse B, Falkai P, Wobrock T. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm. 2010;117(1):105–22.

    Article  Google Scholar 

  109. Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage. 2014;85:961–70.

    Article  Google Scholar 

  110. Najib U, Horvath JC. Transcranial magnetic stimulation (TMS) safety considerations and recommendations. In: Transcranial magnetic stimulation. New York: Humana Press; 2014. pp. 15–30.

    Google Scholar 

  111. Alper K, Schwartz KA, Kolts RL, Khan A. Seizure incidence in psychopharmacological clinical trials: an analysis of Food and Drug Administration (FDA) summary basis of approval reports. Biol Psychiatry. 2007;62(4):345–54.

    Article  Google Scholar 

  112. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMS consensus group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.

    Article  Google Scholar 

  113. Iseger TA, Padberg F, Kenemans JL, Gevirtz R, Arns M. Neuro-cardiac-guided TMS (NCG-TMS): probing DLPFC-sgACC-vagus nerve connectivity using heart rate–first results. Brain Stimul. 2017;10(5):1006–8.

    Article  Google Scholar 

  114. Carpenter LL, Janicak PG, Aaronson ST, Boyadjis T, Brock DG, Cook IA, Dunner DL, Lanocha K, Solvason HB, Demitrack MA. Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice. Depress Anxiety. 2012;29(7):587–96.

    Article  Google Scholar 

  115. Dunner DL, Aaronson ST, Sackeim HA, Janicak PG, Carpenter LL, Boyadjis T, Brock DG, Bonneh-Barkay D, Cook IA, Lanocha K. A multisite, naturalistic, observational study of transcranial magnetic stimulation for patients with pharmacoresistant major depressive disorder: durability of benefit over a 1-year follow-up period. J Clin Psychiatry. 2014;75(12):1394–401.

    Article  Google Scholar 

  116. Mantovani A, Pavlicova M, Avery D, Nahas Z, McDonald WM, Wajdik CD, Holtzheimer PE III, George MS, Sackeim HA, Lisanby SH. Long-term efficacy of repeated daily prefrontal transcranial magnetic stimulation (tms) in treatment-resistant depression. Depress Anxiety. 2012;29(10):883–90.

    Article  Google Scholar 

  117. Janicak PG, Nahas Z, Lisanby SH, Solvason HB, Sampson SM, McDonald WM, Marangell LB, Rosenquist P, McCall WV, Kimball J, O’Reardon JP. Durability of clinical benefit with transcranial magnetic stimulation (TMS) in the treatment of pharmacoresistant major depression: assessment of relapse during a 6-month, multisite, open-label study. Brain Stimul. 2010;3(4):187–99.

    Article  Google Scholar 

  118. Moyer ML, Cristancho MA, O’Reardon JP. Clinical efficacy of Transcranial magnetic stimulation in depression. In: A clinical guide to transcranial magnetic stimulation; 2014:17.

    Google Scholar 

  119. George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport: Int J Rapid Commun Res Neurosci. 1995.

    Google Scholar 

  120. Ahdab R, Ayache SS, Brugières P, Goujon C, Lefaucheur JP. Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression. Neurophysiol Clin. 2010;40(1):27–36.

    Article  CAS  Google Scholar 

  121. Herwig U, Padberg F, Unger J, Spitzer M, Schönfeldt-Lecuona C. Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation. Biol Psychiatry. 2001;50(1):58–61.

    Article  CAS  Google Scholar 

  122. Herwig U, Satrapi P, Schönfeldt-Lecuona C. Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003;16(2):95–9.

    Article  Google Scholar 

  123. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72(7):595–603.

    Article  Google Scholar 

  124. Rusjan PM, Barr MS, Farzan F, Arenovich T, Maller JJ, Fitzgerald PB, Daskalakis ZJ. Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image-guided neuronavigation. Hum Brain Mapp. 2010 Nov;31(11):1643–52.

    Google Scholar 

  125. Herbsman T, Avery D, Ramsey D, Holtzheimer P, Wadjik C, Hardaway F, Haynor D, George MS, Nahas Z. More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biol Psychiatry. 2009;66(5):509–15.

    Article  Google Scholar 

  126. Fitzgerald PB, Hoy K, McQueen S, Maller JJ, Herring S, Segrave R, Bailey M, Been G, Kulkarni J, Daskalakis ZJ. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology. 2009;34(5):1255–62.

    Article  Google Scholar 

  127. Paillère Martinot ML, Galinowski A, Ringuenet D, Gallarda T, Lefaucheur JP, Bellivier F, Picq C, Bruguière P, Mangin JF, Rivière D, Willer JC. Influence of prefrontal target region on the efficacy of repetitive transcranial magnetic stimulation in patients with medication-resistant depression: a [18F]-fluorodeoxyglucose PET and MRI study. Int J Neuropsychopharmacol. 2010;13(1):45–59.

    Article  Google Scholar 

  128. Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, Press D, Pascual-Leone A, Fox MD. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatry. 2018;84(1):28–37.

    Article  CAS  Google Scholar 

  129. Drysdale AT, et al. “Resting-state connectivity biomarkers define neurophysiological subtypes of depression.” Nat Med. 2017;23(1):s28–38.

    Google Scholar 

  130. Anderson RJ, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Repetitive transcranial magnetic stimulation for treatment resistant depression: re-establishing connections. Clin Neurophysiol. 2016;127(11):3394–405.

    Article  Google Scholar 

  131. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci. 2005;102(27):9673–78.

    Google Scholar 

  132. Downar J, Geraci J, Salomons TV, Dunlop K, Wheeler S, McAndrews MP, Bakker N, Blumberger DM, Daskalakis ZJ, Kennedy SH, Flint AJ. Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biol Psychiatry. 2014;76(3):176–85.

    Article  Google Scholar 

  133. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A, Schatzberg AF. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28.

    Article  CAS  Google Scholar 

  134. Siddiqi SH, Taylor SF, Cooke D, Pascual-Leone A, George MS, Fox MD. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am J Psychiatr. 2020;177(5):435–46.

    Article  Google Scholar 

  135. Kaster TS, Downar J, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, Knyahnytska Y, Kennedy SH, Lam RW, Daskalakis ZJ. Trajectories of response to dorsolateral prefrontal rTMS in major depression: a THREE-D study. Am J Psychiatr. 2019;176(5):367–75.

    Article  Google Scholar 

  136. Anderson B, Mishory A, Nahas Z, Borckardt JJ, Yamanaka K, Rastogi K, George MS. Tolerability and safety of high daily doses of repetitive transcranial magnetic stimulation in healthy young men. J ECT. 2006;22(1):49–53.

    Article  Google Scholar 

  137. McDonald WM, Durkalski V, Ball ER, Holtzheimer PE, Pavlicova M, Lisanby SH, Avery D, Anderson BS, Nahas Z, Zarkowski P, Sackeim HA. Improving the antidepressant efficacy of transcranial magnetic stimulation: maximizing the number of stimulations and treatment location in treatment-resistant depression. Depress Anxiety. 2011;28(11):973–80.

    Article  Google Scholar 

  138. Levkovitz Y, Isserles M, Padberg F, Lisanby SH, Bystritsky A, Xia G, Tendler A, Daskalakis ZJ, Winston JL, Dannon P, Hafez HM. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial. World Psychiatry. 2015;14(1):64–73.

    Article  Google Scholar 

  139. Yip AG, George MS, Tendler A, Roth Y, Zangen A, Carpenter LL. 61% of unmedicated treatment resistant depression patients who did not respond to acute TMS treatment responded after four weeks of twice weekly deep TMS in the Brainsway pivotal trial. Brain Stimul. 2017;10(4):847–9.

    Article  Google Scholar 

  140. Holtzheimer PE III, McDonald WM, Mufti M, Kelley ME, Quinn S, Corso G, Epstein CM. Accelerated repetitive transcranial magnetic stimulation for treatment-resistant depression. Depress Anxiety. 2010;27(10):960–3.

    Article  Google Scholar 

  141. Hadley D, Anderson BS, Borckardt JJ, Arana A, Li X, Nahas Z, George MS. Safety, tolerability, and effectiveness of high doses of adjunctive daily left prefrontal repetitive transcranial magnetic stimulation for treatment-resistant depression in a clinical setting. J ECT. 2011;27(1):18–25.

    Article  Google Scholar 

  142. Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, Ziemann U, Rothwell JC. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016;9(3):323–35.

    Article  CAS  Google Scholar 

  143. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  Google Scholar 

  144. Li CT, Chen MH, Juan CH, Huang HH, Chen LF, Hsieh JC, Tu PC, Bai YM, Tsai SJ, Lee YC, Su TP. Efficacy of prefrontal theta-burst stimulation in refractory depression: a randomized sham-controlled study. Brain. 2014;137(7):2088–98.

    Article  Google Scholar 

  145. Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, Knyahnytska Y, Kennedy SH, Lam RW, Daskalakis ZJ, Downar J. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. 2018;391(10131):1683–92.

    Article  Google Scholar 

  146. Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, Nejad R, Pankow H, Choi E, Aaron H, Espil FM. Stanford accelerated intelligent Neuromodulation therapy for treatment-resistant depression. Am J Psychiatr. 2020;177(8):716–26.

    Article  Google Scholar 

  147. Williams NR, Sudheimer KD, Bentzley BS, Pannu J, Stimpson KH, Duvio D, Cherian K, Hawkins J, Scherrer KH, Vyssoki B, DeSouza D. High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression. Brain. 2018;141(3):e18.

    Article  Google Scholar 

  148. Jensen E, Nejad R, Cole E, Williams N. Benchmarking aiTBS with the gold standard. Biol Psychiatry. 2020;87(9):S129.

    Article  Google Scholar 

  149. Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R. Barmak F, Williams NR. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry. 2022:179(2):132–41.

    Google Scholar 

  150. Sackeim HA. Acute continuation and maintenance treatment of major depressive episodes with transcranial magnetic stimulation. Brain Stimulat. 2016;9(3):313–9.

    Article  Google Scholar 

  151. Kessler RC. The costs of depression. Psychiatr Clin. 2012;35(1):1–4.

    Google Scholar 

  152. Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J, Ward H, Lapidus K, Goodman W, Casuto L, Feifel D. Efficacy and safety of deep transcranial magnetic stimulation for obsessive-compulsive disorder: a prospective multicenter randomized double-blind placebo-controlled trial. Am J Psychiatr. 2019;176(11):931–8.

    Article  Google Scholar 

  153. Philip NS, Barredo J, Aiken E, Larson V, Jones RN, Shea MT, Greenberg BD, van’t Wout-Frank M. Theta-burst transcranial magnetic stimulation for posttraumatic stress disorder. Am J Psychiatr. 2019;176(11):939–48.

    Article  Google Scholar 

  154. Barnett SB, Ter Haar GR, Ziskin MC, Rott HD, Duck FA, Maeda K. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol. 2000;26(3):355–66.

    Article  CAS  Google Scholar 

  155. U.S. Food and Drug Administration. Ultrasound imaging. [online]; 2020. https://www.fda.gov/radiation-emitting-products/medical-imaging/ultrasound-imaging. Accessed 3 Jul 2020.

  156. Wu A, Lindner G, Maitz AH, Kalend AM, Lunsford LD, Flickinger JC, Bloomer WD. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Rad Oncol Biol Phys. 1990;18(4):941–9.

    Article  CAS  Google Scholar 

  157. Bowary P, Greenberg BD. Noninvasive focused ultrasound for neuromodulation: a review. Psychiatr Clin. 2018;41(3):505–14.

    Google Scholar 

  158. Fishman PS. Thalamotomy for essential tremor: FDA approval brings brain treatment with FUS to the clinic. J Ther Ultrasound. 2017;5:19.

    Article  Google Scholar 

  159. Bond AE, Shah BB, Huss DS, Dallapiazza RF, Warren A, Harrison MB, Sperling SA, Wang XQ, Gwinn R, Witt J, Ro S. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol. 2017;74(12):1412–8.

    Article  Google Scholar 

  160. Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound. Science. 1958;127(3289):83–4.

    Article  CAS  Google Scholar 

  161. Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity. Curr Opin Neurobiol. 2018;50:222–31.

    Article  CAS  Google Scholar 

  162. Kim H, Chiu A, Lee SD, Fischer K, Yoo SS. Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters. Brain Stimul. 2014;7(5):748–56.

    Article  Google Scholar 

  163. Lee W, Kim H, Jung Y, Song IU, Chung YA, Yoo SS. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep. 2015;5:8743.

    Article  Google Scholar 

  164. Lee W, Kim HC, Jung Y, Chung YA, Song IU, Lee JH, Yoo SS. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016;6(1):1–2.

    Google Scholar 

  165. Beisteiner R, Matt E, Fan C, Baldysiak H, Schönfeld M, Philippi Novak T, Lohse‐Busch H. Transcranial pulse stimulation with ultrasound in Alzheimer’s disease—a new navigated focal brain therapy. Adv Sci. 2020;7(3):1902583.

    Google Scholar 

  166. Sanguinetti JL, Hameroff S, Smith EE, Sato T, Daft CM, Tyler WJ, Allen JJ. Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front Hum Neurosci. 2020;14:52.

    Article  Google Scholar 

  167. Kubanek J, Shukla P, Das A, Baccus SA, Goodman MB. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J Neurosci. 2018;38(12):3081–91.

    Article  CAS  Google Scholar 

  168. Yoo SS, Yoon K, Croce P, Cammalleri A, Margolin RW, Lee W. Focused ultrasound brain stimulation to anesthetized rats induces long-term changes in somatosensory evoked potentials. Int J Imaging Syst Technol. 2018;28(2):106–12.

    Article  Google Scholar 

  169. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging–guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640–6.

    Article  CAS  Google Scholar 

  170. McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol. 2005;31(11):1527–37.

    Article  Google Scholar 

  171. Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, Herrmann N, Heyn C, Aubert I, Boutet A, Smith GS. Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun. 2018;9(1):1–8.

    Article  CAS  Google Scholar 

  172. Abrahao A, Meng Y, Llinas M, Huang Y, Hamani C, Mainprize T, Aubert I, Heyn C, Black SE, Hynynen K, Lipsman N. First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun. 2019;10(1):1–9.

    Article  CAS  Google Scholar 

  173. Airan RD, Meyer RA, Ellens NP, Rhodes KR, Farahani K, Pomper MG, Kadam SD, Green JJ. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 2017;17(2):652–9.

    Article  CAS  Google Scholar 

  174. Wang JB, Aryal M, Zhong Q, Vyas DB, Airan RD. Noninvasive ultrasonic drug uncaging maps whole-brain functional networks. Neuron. 2018;100(3):728–38.

    Article  CAS  Google Scholar 

  175. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18(9):1213–25.

    Article  CAS  Google Scholar 

  176. Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun. 2015;6(1):1–2.

    Article  Google Scholar 

  177. Wu X, Zhu X, Chong P, Liu J, Andre LN, Ong KS, Brinson K, Mahdi AI, Li J, Fenno LE, Wang H. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc Natl Acad Sci. 2019;116(52):26332–42.

    Article  CAS  Google Scholar 

  178. Ghanouni P, Pauly KB, Elias WJ, Henderson J, Sheehan J, Monteith S, Wintermark M. Transcranial MRI-guided focused ultrasound: a review of the technologic and neurologic applications. Am J Roentgenol. 2015;205(1):150–9.

    Article  Google Scholar 

  179. Cummer SA, Christensen J, Alù A. Controlling sound with acoustic metamaterials. Nat Rev Mater. 2016;1(3):1–3.

    Article  Google Scholar 

  180. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439–45.

    Article  CAS  Google Scholar 

  181. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    Article  CAS  Google Scholar 

  182. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9.

    Article  CAS  Google Scholar 

  183. Harris JC. Galileo Galilei: scientist and artist. Arch Gen Psychiatry. 2010;67(8):770–1. https://doi.org/10.1001/archgenpsychiatry.2010.95.

    Article  Google Scholar 

  184. Sadeghi-Tarakameh A, DelaBarre L, Lagore RL, Torrado-Carvajal A, Wu X, Grant A, Adriany G, Metzger GJ, Van de Moortele PF, Ugurbil K, Atalar E. In vivo human head MRI at 10.5 T: a radiofrequency safety study and preliminary imaging results. Magn Reson Med. 2020;84(1):484–96.

    Article  Google Scholar 

  185. Lawless M, Hodge C. Lasik. Int Ophthalmol Clin. 2013;53(1):111–28.

    Article  Google Scholar 

  186. Silberman S. Neurotribes: the legacy of autism and the future of neurodiversity. New York: Penguin; 2015.

    Google Scholar 

  187. Lord C, Cook EH, Leventhal BL, Amaral DG. Autism spectrum disorders. Neuron. 2000;28(2):355–63.

    Article  CAS  Google Scholar 

  188. Greely HT. Remarks on human biological enhancement. U Kan Law Rev. 2007;56:1139.

    Google Scholar 

  189. Kramer P. Listening to prozac: a psychiatrist explores antidepressants drugs and the remaking of the self. Viking: New York; 1993.

    Google Scholar 

  190. Farah MJ, Illes J, Cook-Deegan R, Gardner H, Kandel E, King P, Parens E, Sahakian B, Wolpe PR. Neurocognitive enhancement: what can we do and what should we do? Nat Rev Neurosci. 2004;5(5):421–5.

    Article  CAS  Google Scholar 

  191. Brokowski C, Adli M. CRISPR ethics: moral considerations for applications of a powerful tool. J Mol Biol. 2019;431(1):88–101.

    Article  CAS  Google Scholar 

  192. Canavero S. Criminal minds: neuromodulation of the psychopathic brain. Front Hum Neurosci. 2014;8:124.

    Article  Google Scholar 

  193. Greely HT, Farahany NA. Neuroscience and the criminal justice system. Ann Rev Criminol. 2019;2:451–71.

    Article  Google Scholar 

  194. Farahany NA. Incriminating thoughts. Stan Law Rev. 2012;64:351.

    Google Scholar 

Further Reading

  • Airan R. Focused ultrasound with nanoparticles: neuromodulation with nanoparticles. Science. 2017;357(6350):465.

    Article  Google Scholar 

  • Deisseroth K. Optogenetics review: optogenetics. Nat Methods. 2011;8(1):26–9.

    Article  CAS  Google Scholar 

  • Fox MD. Mapping symptoms to brain networks with the human connectome. N Eng J Med. 2018;379(23):2237–45. Connectomic approaches to neurotherapeutics.

    Article  CAS  Google Scholar 

  • George MS, Whither TMS. TMS review: a one-trick pony or the beginning of a neuroscientific revolution? Am J Psychiatry. 2019;176(11):904–10.

    Article  Google Scholar 

  • Greely HT. Ethics of neuroenhancement: remarks on human biological enhancement. U Kan Law Rev. 2007;56:1139.

    Google Scholar 

  • Holtzheimer PE, Mayberg HS. DBS review: deep brain stimulation for psychiatric disorders. Ann Rev Neurosci. 2011;34:289–307.

    Article  CAS  Google Scholar 

  • Tyler WJ, Lani SW, Hwang GM. Focused ultrasound review: ultrasonic modulation of neural circuit activity. Curr Opinion Neurobiol. 2018;50:222–31.

    Article  CAS  Google Scholar 

  • Williams NR, Taylor JJ, Kerns S, Short EB, Kantor EM, George MS. Interventional psychiatry: interventional psychiatry: why now? J Clin Psychiatry. 2014;75(8):895.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, O. (2023). Neuroinnovation in Medicine: History and Future. In: Roberts, L.W. (eds) Ethics and Clinical Neuroinnovation. Springer, Cham. https://doi.org/10.1007/978-3-031-14339-7_2

Download citation

Publish with us

Policies and ethics