Skip to main content

PET Images Atlas-Based Segmentation Performed in Native and in Template Space: A Radiomics Repeatability Study in Mouse Models

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

Image segmentation is a task of the utmost importance in computer vision, especially in the biomedical field where accurate delineation of an organ or lesion can make a difference in patient’s survival. Although there are several approaches, the Atlas-based co-registration method is most appropriate for low-contrast functional images, where organ boundaries are not easily recognizable. This technique is strongly dependent on the template choice and can even lead to inaccurate results if unproperly tuned; however, two different pipelines were similarly adopted in literature either warping the Atlas to the target image or warping the target image to the Atlas. This, unless proved to be equivalent, may result ambiguous, hence in this study we investigated the two algorithms equivalence employing a preclinical dataset of mice undergoing micro-PET/CT scans after chelator injection. We focused on seven selected organs (namely heart, bladder, stomach, spleen, liver, kidneys and lungs), and for each of them we computed the percentage of PET radiomics features with significant variations between the two algorithms. Our results showed that the two approaches considerably differed. Specifically, a mean significant difference of about 40% was found in the radiomics features extracted following the two different pipelines, posing the need to distinguish between the two registration output spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alongi, P., et al.: Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595–4605 (2021). https://doi.org/10.1007/s00330-020-07617-8

    Article  Google Scholar 

  2. Litjens, G., et al.: A survey on deep learning in medical image analysis (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  3. Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in positron emission tomography oncological studies. Pattern Recognit. Image Anal. 28, 106–113 (2018). https://doi.org/10.1134/S1054661818010054

    Article  Google Scholar 

  4. Stefano, A., Comelli, A.: Customized efficient neural network for covid-19 infected region identification in CT images. J. Imaging. 7, 131 (2021). https://doi.org/10.3390/jimaging7080131

    Article  Google Scholar 

  5. Comelli, A., et al.: Tissue classification to support local active delineation of brain tumors. In: Communications in Computer and Information Science, pp. 3–14. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-39343-4_1

  6. Soret, M., Bacharach, S.L., Buvat, I.I.: Partial-volume effect in PET tumor imaging. J. Nucl. Med. 48, 932–945 (2007). https://doi.org/10.2967/jnumed.106.035774

    Article  Google Scholar 

  7. Stefano, A., Gallivanone, F., Messa, C.L., Gilardi, M.C.L., Castiglioni, I.: Metabolic impact of Partial Volume Correction of [18F]FDG PET-CT oncological studies on the assessment of tumor response to treatment. Q. J. Nucl. Med. Mol. Imaging. 58, 413–423 (2014)

    Google Scholar 

  8. Li, X., Yankeelov, T.E., Peterson, T.E., Gore, J.C., Dawant, B.M.: Automatic nonrigid registration of whole body CT mice images. Med. Phys. 35, 1507–1520 (2008). https://doi.org/10.1118/1.2889758

    Article  Google Scholar 

  9. Elfarnawany, M., Alam, S.R., Agrawal, S.K., Ladak, H.M.: Evaluation of non-rigid registration parameters for atlas-based segmentation of CT images of human cochlea. Med. Imaging 2017 Image Process. 10133, 101330Z (2017). https://doi.org/10.1117/12.2254040

  10. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset. Sci. Data. 8, 1–14 (2021). https://doi.org/10.1038/s41597-021-00946-3

    Article  Google Scholar 

  11. Zaitsev, M., Akin, B., LeVan, P., Knowles, B.R.: Prospective motion correction in functional MRI. Neuroimage 154, 33–42 (2017). https://doi.org/10.1016/j.neuroimage.2016.11.014

    Article  Google Scholar 

  12. Liu, Q., et al.: Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT. Phys. Med. Biol. 62, 3944–3957 (2017). https://doi.org/10.1088/1361-6560/aa6520

    Article  Google Scholar 

  13. Gispert, J.D., et al.: Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. Neuroimage 19, 601–612 (2003). https://doi.org/10.1016/S1053-8119(03)00072-7

    Article  Google Scholar 

  14. Rajagopalan, V., Pioro, E.P.: Disparate voxel based morphometry (VBM) results between SPM and FSL softwares in ALS patients with frontotemporal dementia: which VBM results to consider? BMC Neurol. 15 (2015). https://doi.org/10.1186/s12883-015-0274-8

  15. Benfante, V., et al.: A new preclinical decision support system based on PET radiomics: a preliminary study on the evaluation of an innovative 64Cu-Labeled chelator in mouse models. J. Imaging. 8, 92 (2022). https://doi.org/10.3390/jimaging8040092

    Article  Google Scholar 

  16. Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: Radiomics and artificial intelligence: new frontiers in medicine. Recent Prog. Med. 111(3), 130–135 (2020 Mar). Italian. https://www.recentiprogressi.it/archivio/3315/articoli/32853/

  17. Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 37, 961–972 (2021). https://doi.org/10.1002/asmb.2642

    Article  MathSciNet  Google Scholar 

  18. Stefano, A., et al.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics. 10, 306 (2020). https://doi.org/10.3390/diagnostics10050306

    Article  Google Scholar 

  19. Stefano, A., et al.: Robustness of pet radiomics features: impact of co-registration with MRI. Appl. Sci. 11, 10170 (2021). https://doi.org/10.3390/app112110170

    Article  Google Scholar 

  20. Tosato, M., et al.: Copper coordination chemistry of Sulfur Pendant Cyclen derivatives: an attempt to hinder the reductive-induced Demetalation in 64/67Cu radiopharmaceuticals. Inorg. Chem. 60, 11530–11547 (2021). https://doi.org/10.1021/ACS.INORGCHEM.1C01550/SUPPL_FILE/IC1C01550_SI_001.PDF

    Article  Google Scholar 

  21. Dogdas, B., Stout, D., Chatziioannou, A.F., Leahy, R.M.: Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys. Med. Biol. 52, 577–587 (2007). https://doi.org/10.1088/0031-9155/52/3/003

    Article  Google Scholar 

  22. Baiker, M., Staring, M., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Automated registration of whole-body follow-up MicroCT data of mice. Med. Image Comput. Comput. Assist. Interv. 14, 516–523 (2011).https://doi.org/10.1007/978-3-642-23629-7_63

  23. Stefano, A., et al.: A graph-based method for PET image segmentation in radiotherapy planning: a pilot study. In: Petrosino, A. (ed.) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 711–720. Springer-Verlag Berlin (2013). https://doi.org/10.1007/978-3-642-41184-7_72

  24. Fornacon-Wood, I., et al.: Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur. Radiol. 30, 6241–6250 (2020). https://doi.org/10.1007/s00330-020-06957-9

  25. Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  26. Comelli, A., Stefano, A.: Active surface for fully 3D automatic segmentation. In: Del Bimbo, A., et al. (eds.) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 357–367. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_27

  27. Raccagni, I., et al.: [18F]FDG and [18F]FLT PET for the evaluation of response to neo-adjuvant chemotherapy in a model of triple negative breast cancer. PLoS One 13 (2018). https://doi.org/10.1371/journal.pone.0197754

  28. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33, 115–126 (2006). https://doi.org/10.1016/j.neuroimage.2006.05.061

    Article  Google Scholar 

  29. Esteban, O., et al.: fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods. 16, 111–116 (2019). https://doi.org/10.1038/s41592-018-0235-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Benfante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giaccone, P., Benfante, V., Stefano, A., Cammarata, F.P., Russo, G., Comelli, A. (2022). PET Images Atlas-Based Segmentation Performed in Native and in Template Space: A Radiomics Repeatability Study in Mouse Models. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics