Skip to main content

Metal Soil Contamination, Metallophytes, and Arbuscular Mycorrhizal Fungi From South America

  • Chapter
  • First Online:
Mycorrhizal Fungi in South America

Part of the book series: Fungal Biology ((FUNGBIO))

  • 413 Accesses

Abstract

Heavy metal (HM) soil contamination is an environmental problem since metals can accumulate in the soil and be introduced into the food chain of organisms endangering the quality of the entire ecosystems. A wide diversity of plant species called metallophyte, especially the hyperaccumulator plants, has a great capacity to accumulate HM and can be used to remediate contaminated soil. Phytoremediation is “the use of plants and associated microorganisms to remove, contain, inactivate, or degrade contaminants.” Several plants can be colonized by arbuscular mycorrhizal (AM) fungi, which tend to be pioneers at contaminated sites, emphasizing their role in the accumulation of and tolerance to metals by plants. Information on metallophytes/hyperaccumulator plants adapted to HM-contaminated soils in South America, and even more their AM fungal status, is quite scarce. This work showed the mycorrhizal status of metallophytes/hyperaccumulator plant species. We especially focused on the relationship between the AM symbiosis with metallophytes in soils contaminated with Cu from Chile and soils contaminated with Pb from Central Argentina. These results should be considered for future phytoremediation strategies based on the selection and utilization of AM fungi species that exhibit tolerance to HM soil contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43:2427–2431

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Environmental pollution, 3rd edn. Springer, Amsterdam

    Book  Google Scholar 

  • Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution. Blackie Academic, London, p 168

    Google Scholar 

  • Aponte H, Medina J, Butler B, Meier S, Cornejo P, Kuzyakov Y (2020) Soil quality indices for metal(loid) contamination: an enzymatic perspective. Land Degrad Dev 31:2700–2719

    Article  Google Scholar 

  • Ashraf S, Ali Q, Zahir A, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  PubMed  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  PubMed  Google Scholar 

  • Ávila G, Gaete H, Hidalgo ME, Neaman A (2010) Evaluación de la toxicidad de cobre en suelos a través de biomarcadores de estrés oxidativo en Eisenia foetida. Química Nova 33:566–570

    Article  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Barman SC, Kisku GC, Salve PR, Misra D, Sahu RK, Ramteke PW, Bhargava SK (2001) Assessment of industrial effluent and its impact on soil and plants. J Environ Biol 22:251–256

    CAS  PubMed  Google Scholar 

  • Becerra A, Menoyo E, Marro N, Brito JM, Salazar J, Rodriguez J, Pardo A, Bartoloni N (2016) Micorrizas arbusculares de Sorghum halepense creciendo en suelos contaminados con plomo, Bouwer, Córdoba. XXV Congreso Argentino de la Ciencia del Suelo, Río IV, Córdoba, p 45

    Google Scholar 

  • Becerra AG, Menoyo E, Marro N, Salazar J, Rodriguez JH, Brito JM, Bartoloni N (2017a) Bidens pilosa creciendo en suelos contaminados con plomo: estudio de sus micorrizas. XXI Jornadas de la Sociedad de Biología de Córdoba. Oral Communication 11

    Google Scholar 

  • Becerra AG, Menoyo E, Marro N, Salazar J, Rodriguez JH, Brito JM, Bartoloni N (2017b) Micorrizas arbusculares de Tagetes minuta creciendo en suelos contaminados con plomo. XXXVI Jornadas Argentina de Botánica, p 315–316

    Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco A, Salazar MJ, Vergara Cid C, Pereyra C, Cavaglieri LR, Becerra AG, Pignata ML, Rodriguez JH (2016) Multidisciplinary study of chemical and biological factors related to Pb accumulation in sorghum crops grown in contaminated soils and their toxicological implications. J Geochem Explor 166:18–26

    Article  CAS  Google Scholar 

  • Briat J-F, Lebrun M (1999) Plant responses to metal toxicity. CR Acad Sci Paris 322:43–54

    Article  CAS  Google Scholar 

  • Cabello MN (1997) Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol Ecol 22:233–236

    Article  CAS  Google Scholar 

  • Carvalho MTV, Amaral DC, Guilherme LRG, Aarts MGM (2019) Gomphrena claussenii the first South American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Front Plant Sci 4:180

    Google Scholar 

  • Castañón-Silva P, Venegas-Urrutia M, Lobos-Valenzuela M, Gaete-Olivares J (2013) Influencia de micorrizas arbusculares Glomus spp. en el crecimiento y acumulación de cobre en girasol Helianthus annuus L. Agrociencia 47:309–317

    Google Scholar 

  • Chandra R, Kumar V, Tripathi S, Sharma P (2018) Heavy metal phytoextraction potential of native weeds and grasses from endocrine disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecol Eng 111:143–156

    Article  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Aust J Ecotoxicol 4:37–51

    Google Scholar 

  • Chen B, Nayuki K, Kuga Y, Zhang X, Wu S, Ohtomo R (2018) Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation mX-ray fluorescence analysis. Microb Environ 33:257–263

    Article  Google Scholar 

  • Cherian S, Oliveira MM (2006) Critical review. Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  Google Scholar 

  • Cho C, Yavuz-Corapcioglu M, Park S, Sung K (2008) Effects of grasses on the fate of VOCs in contaminated soil and air. Water Air Soil Poll 187:243–250

    Article  CAS  Google Scholar 

  • Colombo RP, Benavidez ME, Bidondo LF, Silvani VA, Bompadre MJ, Statello M, Scorza MV, Scotti A, Godeas AM (2019) Arbuscular mycorrhizal fungi in heavy metal highly polluted soil in the Riachuelo river basin. Rev Microbiol Arg 52:145–149

    Google Scholar 

  • Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem 57:925–928

    Article  CAS  Google Scholar 

  • Cornejo P, Meier S, García S, Ferrol N, Durán P, Borie F, Seguel A (2017a) Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using Oenothera picensis. J Soil Sci Plant Nutrit 17:14–21

    CAS  Google Scholar 

  • Cornejo P, Seguel A, Aguilera P, Meier S, Larsen J, Borie F (2017b) Arbuscular mycorrhizal fungi improves tolerance of agricultural plants to cope abiotic stress conditions. In: Singh DP (ed) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer International Publishing, Cham, pp 55–80

    Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig M, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Tot Environ 406:154–160

    Article  CAS  Google Scholar 

  • Cuillel M (2009) The dual personality of ionic copper in biology. J Incl Phenom Macroc Chem 65:165–170

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte AC, Cachada A, Rocha-Santos T (2018) Soil pollution: from monitoring to remediation. Academic Press, Elsevier, London, p 296

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerland 41:229–248

    Article  CAS  Google Scholar 

  • Espinoza-Quinones FR, Zacarkim CE, Palacio SM, Obregon CL, Zenatti DC (2005) Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp. Braz J Physiol 35:744–746

    CAS  Google Scholar 

  • Faggioli V, Menoyo E, Geml J, Kemppainen M, Pardo A, Salazar J, Becerra AG (2019) Soil lead-pollution modifies the structure of arbuscular mycorrhizal fungal communities. Mycorrhiza 29:363–373

    Article  CAS  PubMed  Google Scholar 

  • FAO and ITPS (2015) Status of the World’s Soil Resources (SWSR) - Main Report. Rome, Italy, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. http://www.fao.org/3/a-i5199e.pdf

  • FAO and UNEP (2021) Global assessment of soil pollution – summary for policy makers. FAO, Rome

    Google Scholar 

  • Fernández JC, Henríquez FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of Arbuscular Mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gei V, Erskine PD, Echevarria G, Isnard S, Fogliani B, Jaffré T, van der Ent A (2020) A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot J Linn Soc 194:1–22

    Article  Google Scholar 

  • Gil-Cardeza ML, Ferri A, Cornejo P, Gomez E (2014) Distribution of chromium species in a Cr-polluted soil: presence of Cr (III) in glomalin related protein fraction. Sci Tot Environ 493:828–833

    Google Scholar 

  • Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological genetic resource scarcely known and studied in the region. Rev Chilena Hist Nat 77:185–194

    Google Scholar 

  • Gomes MP (2011) Contribution of mycorrhizal fungi in arsenic tolerance of Anadenanthera peregrina (L.) Speg. and Brachiaria decumbens Stapf. MSc. Thesis, Universidade Federal de Minas Gerais, Brazil

    Google Scholar 

  • González I, Muena V, Cisternas M, Neaman A (2008) Copper accumulation in a plant community affected by mining contamination in Puchuncaví valley, Central Chile. Rev Chilena Hist Nat 81:279–291

    Google Scholar 

  • Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. For Ecol Manag 81:1–17

    Article  Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Kelley C, Gaither KK, Baca-Spry A, Cruickshank BJ (2000) Incorporation of phytoremediation strategies into the introductory chemistry laboratory. Chem Educator 5:140–143

    Article  CAS  Google Scholar 

  • Khade WS, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal- contaminated and non-contaminated soils adjoining Kanpur Tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202:45–56

    Article  CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  PubMed  Google Scholar 

  • Klauberg-Filho O, Siqueira JO, Moreira FMS, Soares CRFS, Silva S (2005) Ecologia, função e potencial de aplicação de fungos micorrízicos arbusculares em condições de excesso de metais pesados. In: Vidal-Torrado P, Alleoni LRF, Cooper M, Silva AP, Cardoso EJ (eds) Tópicos em ciência do solo. UFV; Sociedade Brasileira de Ciência do Solo, Viçosa, pp 85–144

    Google Scholar 

  • Krzciuk K, Gałuszka A (2014) Prospecting for hyperaccumulators of trace elements: a review. Crit Rev Biotechnol 35:1–11

    Google Scholar 

  • Lyanguzova IV (2017) Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes. Russ J Ecol 48:311–320

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  PubMed  Google Scholar 

  • McBride M (1994) Environmental chemistry of soils. Environ Chem Soils 7:406

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opinion Biotech 14:277–282

    Article  CAS  Google Scholar 

  • Medina J, Meier S, Curaqueo G, Borie F, Aguilera P, Oehl F, Cornejo P (2015) Arbuscular mycorrhizal status of pioneer plants from the mouth of lake Budi, Araucania Region, Chile. J Soil Sci Plant Nutr 15:142–152

    Google Scholar 

  • Meier S, Azcón R, Cartes P, Borie F, Cornejo P (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. App Soil Ecol 48:117–124

    Article  Google Scholar 

  • Meier S, Alvear M, Borie P, Aguilera P, Ginocchio R, Cornejo P (2012a) Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicol Environ Saf 75:8–15

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012b) Phytoremediation of metal polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775

    Article  CAS  Google Scholar 

  • Meier S, Borie F, Curaqueo G, Bolan N, Cornejo P (2012c) Effects of arbuscular mycorrhizal inoculation on metallophyte and agricultural plants growing at increasing copper levels. App Soil Ecol 61:280–287

    Article  Google Scholar 

  • Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R (2015) Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutrit Soil Sci 178:126–135

    Article  CAS  Google Scholar 

  • Meier S, Curaqueo G, Khan N, Bolan N, Cea M, González ME, Cornejo P, Ok Y, Borie F (2017a) Chicken manure-derived biochar reduce the bioavailability of copper in a contaminated soil. J Soils Sediments 17:741–750

    Article  CAS  Google Scholar 

  • Meier S, Curaqueo G, Khan N, Bolan N, Rilling J, Vidal C, Fernández N, Acuña J, González ME, Cornejo P, Borie F (2017b) Effects of biochar on copper inmobilization and soil microbial communities in a metal-contaminated soil. J Soils Sediments 17:1237–1250

    Article  CAS  Google Scholar 

  • Menares F, Carrasco M, González B, Fuentes I, Casanova M (2017) Phytostabilization ability of Baccharis linearis and its relation to properties of a tailings-derived Technosol. Water Air Soil Pollut 228:182

    Article  Google Scholar 

  • Mendoza RE, Garcia IV, de Cabo L, Weigandt CF, Fabrizio de Iorio A (2015) The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Sci Tot Environ 505:555–564

    Article  CAS  Google Scholar 

  • Menoyo E, Salazar MJ, Becerra AG (2021) Microorganismos asociados a plantas nativas acumuladoras de plomo. V Congreso Argentino de Microbiología Agrícola y Ambiental. Libro de Resúmenes P-AM-11

    Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Google Scholar 

  • MMA, Ministerio del Medio Ambiente (Chile) (2011) Informe del Estado del Medio Ambiente 2011. Gobierno de Chile, p 513

    Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agric Biotechnol 1:5–11

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Navarrete IA, Gabiana CC, Dumo JR, Salmo SG, Guzman MA, Valera NS, Espiritu Q (2017) Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environ Monit Assess 189:145

    Article  PubMed  Google Scholar 

  • Otte ML, Haarsma MS, Broekman RA, Rozema J (1993) Relation between heavy metals concentrations in salt marsh plants and soil. Environ Pollut 82:13–22

    Article  CAS  PubMed  Google Scholar 

  • Pepper IL, Gerba CP, Newby DT, Rice CW (2009) Soil: a public health threat or savior? Crit Rev Environ Sci Tech 39:416–432

    Article  Google Scholar 

  • Pérez R, Tapia Y, Antilén M, Casanova M, Vidal C, Santander C, Aponte H, Cornejo P (2021) Interactive effect of compost application and inoculation with the fungus Claroideoglomus claroideum in Oenothera picensis plants growing in mine tailings. Ecotoxicol Environ Saf 208:111495

    Article  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Adıgüzel N (2008) The nickel hyperaccumulating plants of Turkey and adjacent areas: a review with new data. Turk J Biol 32:143–153

    CAS  Google Scholar 

  • Reeves RD, van der Ent A, Echevarria G, Isnard S, Baker AJM (2021) Global distribution and ecology of hyperaccumulator plants. In: van der Ent A, Baker JM, Echevarria G, Simonnot M-O, Morel JL (eds) Agromining: farming for metals, mineral resource reviews, pp 133–154

    Chapter  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaın R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:1–10

    Article  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goia’s state, Brazil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffr T, Erskine PD, Echevarria G, van der Ent A (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  PubMed  Google Scholar 

  • Salazar MJ, Pignata ML (2014) Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36

    Article  CAS  Google Scholar 

  • Salazar MJ, Menoyo E, Faggioli V, Geml J, Cabello M, Rodriguez JH, Marro N, Pardo A, Pignata ML, Becerra AG (2018) Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci Tot Environ 643:238–246

    Article  CAS  Google Scholar 

  • Sandermann HJR (1994) Higher plant metabolism of xenobiotics: the 'green liver' concept. Pharmacogenetics 4:225–241

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Stürmer SL, Guilherme LRG, Moreira FMS, Soares CRFS (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Bundschuh J, do Nascimento CWA (2016) Arbuscular mycorrhizal fungi assisted phytoremediation of a lead-contaminated site. Sci Total Environ 572:86–97

    Article  CAS  PubMed  Google Scholar 

  • Schnoor JL, Light LA, Mccutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stümer SL, Siqueira JO (2006) Diversity of arbuscular mycorrhizal fungi in Brazilian ecosystems. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Soil biodiversity in Amazonian and other Brazilian ecosystems. CABIPub, Wallingford, pp 206–236

    Chapter  Google Scholar 

  • Swartjes FA (2011) Dealing with contaminated sites: from theory towards practical application. Springer Science and Business Media

    Book  Google Scholar 

  • Thijs S, Sillen W, Weyens N, Vangronsveld J (2017) Phytoremediation: state-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int J Phytoremediation 19:23–38

    Article  CAS  PubMed  Google Scholar 

  • Vassilev A, Schwitzguébel J-P, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Scient W J 4:9–34

    Article  CAS  Google Scholar 

  • Vidal C, Ruiz A, Ortiz J, Larama G, Pérez R, Santander C, Avelar P, Cornejo P (2020) Antioxidant responses of phenolic compounds and immobilization of copper in Imperata cylindrica, a plant with potential use for bioremediation of Cu contaminated environments. Plan Theory 9:1397

    CAS  Google Scholar 

  • Vidal C, Larama G, Riveros A, Meneses C, Cornejo P (2021) Main molecular pathways associated with copper tolerance response in Imperata cylindrica by de novo transcriptome. Assembl Plants 10:357

    Article  CAS  Google Scholar 

  • Xian X, Shokohifard G (1989) Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water Air Soil Pollut 45:265–273

    Article  CAS  Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu TY, Ghosh A, Chen H, Tang M (2016) The roles of arbuscurlar mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Agencia de Promoción Científica y Tecnológica (PICT 2018-1081). AGB and EM are researchers from CONICET. PC acknowledges to ANID/FONDECYT/1210964 and ANID/FONDAP/15130015 grants, associated to CIMYSA-UFRO and CRHIAM-UDEC, Chile. MC is a researcher from CIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra G. Becerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becerra, A.G., Menoyo, E., Cornejo, P., Cabello, M. (2022). Metal Soil Contamination, Metallophytes, and Arbuscular Mycorrhizal Fungi From South America. In: Lugo, M.A., Pagano, M.C. (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-12994-0_11

Download citation

Publish with us

Policies and ethics