Skip to main content

Efficient Estimation of the Additive Risks Model for Interval-Censored Data

  • Chapter
  • First Online:
Emerging Topics in Modeling Interval-Censored Survival Data

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

In contrast to the popular Cox model which presents a multiplicative covariate effect specification on the time to event hazards, the semiparametric additive risks model (ARM) offers an attractive additive specification, allowing for direct assessment of the changes or the differences in the hazard function for changing value of the covariates. The ARM is a flexible model, allowing the estimation of both time-independent and time-varying covariates. It has a nonparametric component and a regression component identified by a finite-dimensional parameter. This chapter presents an efficient approach for maximum-likelihood (ML) estimation of the nonparametric and the finite-dimensional components of the model via the Minorize-Maximize (MM) algorithm for case-II interval-censored data. The operating characteristics of our proposed MM approach are assessed via simulation studies, with illustration on a breast cancer dataset via the R package MMIntAdd. It is expected that the proposed computational approach will not only provide scalability to the ML estimation scenario but may also simplify the computational burden of other complex likelihoods or models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogaerts, K., Komárek, A., & Lesaffre, E. (2018). Survival analysis with interval-censored data: A practical approach with examples in R, SAS, and BUGS. CRC/Taylor & Francis Group.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman and Hall.

    Book  MATH  Google Scholar 

  • Finkelstein, D. M. (1986). A proportional hazards model for interval-censored failure time data. Biometrics, 42, 845–854.

    Article  MathSciNet  MATH  Google Scholar 

  • Finkelstein, D. M., & Wolfe, R. A. (1985). A semiparametric model for regression analysis of interval-censored failure time data. Biometrics, 41, 933–945.

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher, R. (2013). Practical methods of optimization. John Wiley & Sons.

    MATH  Google Scholar 

  • Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring. Annals of Statistics, 24, 540–568.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, X., Xu, J., & Tian, G. (2019). On profile MM algorithms for Gamma frailty survival models. Statistica Sinica, 29, 895–916.

    MathSciNet  MATH  Google Scholar 

  • Huffer, F. W., & McKeague, I. W. (1991). Weighted least squares estimation for Aalen’s additive risk model. Journal of the American Statistical Association, 86, 114–129.

    Article  Google Scholar 

  • Hunter, D. R., & Lange, K. (2000). Quantile regression via an MM algorithm. Journal of Computational and Graphical Statistics, 9, 60–77.

    MathSciNet  Google Scholar 

  • Hunter, D. R., & Lange, K. (2002). Computing estimates in the proportional odds model. Annals of the Institute of Statistical Mathematics, 54, 155–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Hunter, D. R., & Lange, K. (2004). A tutorial on MM algorithms. The American Statistician, 58, 30–37.

    Article  MathSciNet  Google Scholar 

  • Hunter, D. R., & Li, R. (2005). Variable selection using MM algorithms. Annals of Statistics, 33, 1617–1642.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, D., & Ying, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika, 81, 61–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Martinussen, T., & Scheike, T. H. (2002). Efficient estimation in additive hazards regression with current status data. Biometrika, 89, 649–658.

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy, S. A., & Van der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95, 449–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, H. D. (2017). An introduction to MM algorithms for machine learning and statistical estimation. WIREs Data Mining and Knowledge Discovery, 7(e1198).

    Google Scholar 

  • Srivastava, S., DePalma, G., & Liu, C. (2019). An asynchronous distributed expectation maximization algorithm for massive data: the DEM algorithm. Journal of Computational and Graphical Statistics, 28, 233–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L., Sun, J., & Tong, X. (2010). Regression analysis of case-II interval-censored failure time data with the additive hazards model. Statistica Sinica, 20, 1709–1723.

    MathSciNet  MATH  Google Scholar 

  • Wang, P., Zhou, Y., & Sun, J. (2020). A new method for regression analysis of interval-censored data with the additive hazards model. Journal of the Korean Statistical Society, 49, 1131–1147.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, T., He, K., Ma, W., Bandyopadhyay, D., & Sinha, S. (2022). Minorize-maximize algorithm for the generalized odds rate model for clustered current status data. Canadian Journal of Statistics. To appear.

    Google Scholar 

  • Wu, T. T., & Lange, K. (2010). The MM alternative to EM. Statistical Science, 25, 492–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, D., Cai, J., & Shen, Y. (2006). Semiparametric additive risks model for interval-censored data. Statistica Sinica, 16, 287–302.

    MathSciNet  MATH  Google Scholar 

  • Zhang, Z., & Sun, J. (2010). Interval censoring. Statistical Methods in Medical Research, 19, 53–70.

    Article  MathSciNet  Google Scholar 

  • Zhao, B., Wang, S., Wang, C., & Sun, J. (2021). New methods for the additive hazards model with the informatively interval-censored failure time data. Biometrical Journal, 63, 1507–1525.

    Article  MathSciNet  Google Scholar 

  • Zhou, H., & Zhang, Y. (2012). EM vs MM: A case study. Computational Statistics & Data Analysis, 56, 3909–3920.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Bandyopadhyay acknowledges funding support from the NIH grants P20CA252717, P20CA264067, R21DE031879, R01DE031134, and P30CA016059 (VCU’s Massey Cancer Center Support Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiran Sinha .

Editor information

Editors and Affiliations

Appendix

Appendix

We shall use the second part of Lemma 1 from Wang et al. (2022) in proving Theorem 1, and we present this result in the following proposition. The proof of Proposition 1 can be found in Wang et al. (2022).

Proposition 1 (Wang et al., 2022)

For any τ, τ 0 ≥ 0

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathit{\text{log}}\left\{\frac{1-\mathit{\text{exp}}(-\tau)}{1-\mathit{\text{exp}}(-\tau_0)}\right\}\geq (\tau-\tau_0)A_1(\tau_0)-(\tau-\tau_0)^2A_2(\tau_0)+\mathit{\text{log}}\left(\frac{\tau_0}{\tau}\right)+1-\frac{\tau_0}{\tau}, \end{array} \end{aligned} $$

where A 1(τ 0) = exp(−τ 0)∕{1 −exp(−τ 0)} and A 2(τ 0) = exp(−τ 0)∕2{1 −exp(−τ 0)}2.

1.1 Proof of Theorem 1

In ℓ 2(λ, β) and ℓ 4(λ, β), (λ 1, …, λ m)⊤ are not entangled with β. Therefore, there is no need to develop the minorization functions for them. In the following, we show how to find the minorization functions for ℓ 1(λ, β) and ℓ 3(λ, β). Define \(u(L_i,X_i)=\sum _{k: t_k\leq L_i}\lambda _{k}+\beta ^{\top } Z_{x_i}(L_i)\), \(u(R_i,X_i)=\sum _{k: t_k\leq R_i}\lambda _{k}+\beta ^{\top } Z_{x_i}(R_i)\) and \(u(L_i, R_i,X_i)=\sum _{k: L_i<t_k\leq R_i}\lambda _{k}+\beta ^{\top } \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\}\). According to our model assumption (1), u(L i, X i) > 0, u(R i, X i) > 0 and u(L i, R i, X i) > 0 for all i. Now, we can re-write

$$\displaystyle \begin{aligned} \begin{array}{rcl} \ell_1(\lambda,\beta)& =&\displaystyle \sum_{i=1}^n\Delta_{L,i}\mbox{log}[1-\mbox{exp}\{- \sum_{k: t_k\le L_i}\lambda_k-\beta^{\top} Z_{x_i}(L_i)\}]\\ & =&\displaystyle \sum_{i=1}^n\Delta_{L,i}\mbox{log}[1-\mbox{exp}\{-u(L_i, X_i)\}]\\ & =&\displaystyle \sum_{i=1}^n\Delta_{L,i}\left(\mbox{log}[1-\mbox{exp}\{-u_0(L_i, X_i)\}]+\mbox{log}\left[\frac{1-\mbox{exp}\{-u(L_i, X_i)\}}{1-\mbox{exp}\{-u_0(L_i, X_i)\}}\right]\right). \end{array} \end{aligned} $$

Applying Proposition 1 to the second term of the above display with τ = u(L i, X i) and τ 0 = u 0(L i, X i), we obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} \ell_1(\lambda,\beta)& \geq&\displaystyle \sum_{i=1}^n\Delta_{L,i}\bigg( \mbox{log}[1-\mbox{exp}\{-u_0(L_i, X_i)\}]+ \{ u(L_i, X_i)-u_0(L_i, X_i)\} A_1(u_0(L_i, X_i)) \\ & &\displaystyle -\{ u(L_i, X_i)-u_0(L_i, X_i)\}^2 A_2(u_0(L_i, X_i))+ \mbox{log}\left\{ \frac{u_0(L_i, X_i)}{u(L_i, X_i)}\!\right\} +1- \frac{u_0(L_i, X_i)}{u(L_i, X_i)} \! \bigg) \\ & =&\displaystyle \sum_{i=1}^n\Delta_{L,i}\Bigg[\{A_1(u_0(L_i,X_i))+2A_2(u_0(L_i,X_i))u_0(L_i,X_i)\}u(L_i,X_i)\\ & &\displaystyle -A_2(u_0(L_i,X_i))u^2(L_i,X_i) \\ & &\displaystyle +\mbox{log}\left\{\frac{u_0(L_i,X_i)}{u(L_i,X_i)}\right\}-\frac{u_0(L_i,X_i)}{u(L_i,X_i)} +C_1(u_0(L_i,X_i))\Bigg]\\ & =&\displaystyle \sum_{i=1}^n\Delta_{L,i}\Bigg[\!\{A_1(u_0(L_i,X_i))+2A_2(u_0(L_i,X_i))u_0(L_i,X_i)\}\!\left(\sum_{k: t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)\!\right)\\ & &\displaystyle -A_2(u_0(L_i,X_i))\left(\sum_{k: t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)\right)^2+\mbox{log}\left(\frac{u_0(L_i,X_i)}{\sum_{k: t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)}\right)\\ & &\displaystyle -\left(\frac{u_0(L_i,X_i)}{\sum_{k: t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)}\right)+C_1(u_0(L_i,X_i))\Bigg],{} \end{array} \end{aligned} $$
(7)

where C 1(u 0(L i, X i)) is the constant term that only depends on u 0(L i, X i), given as \(C_1(u_0(L_i,X_i))=\mbox{log}[1-\mbox{exp}\{-u_0(L_i, X_i)\}]-A_1(u_0(L_i,X_i))u_0(L_i,X_i)-A_2(u_0(L_i,X_i))u_0^2(L_i,X_i)+1.\) Next, we look into the following three terms of (7). First,

$$\displaystyle \begin{aligned} \begin{array}{rcl} -\left(\sum_{t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)\right)^2& =&\displaystyle -\left(\sum_{t_k\le L_i}\frac{\lambda_{k0}}{u_0(L_i,X_i)}\frac{u_0(L_i,X_i)}{\lambda_{k0}}\lambda_k\right. \\ & &\displaystyle \left.+\frac{\beta_0^{\top} Z_{x_i}(L_i)}{u_0(L_i,X_i)}\frac{u_0(L_i,X_i)}{\beta_0^{\top} Z_{x_i}(L_i)}\beta^{\top} Z_{x_i}(L_i)\right)^2\\ & \ge&\displaystyle -\bigg\{\sum_{t_k\leq L_i}\frac{u_0(L_i,X_i)}{\lambda_{k0}}\lambda_k^2+\frac{u_0(L_i,X_i)}{\beta_0^{\top} Z_{x_i}(L_i)}(\beta^{\top} Z_{x_i}(L_i))^2\bigg\}, \end{array} \end{aligned} $$

where, the inequality is obtained by applying Jensen’s inequality on the concave function f(x) = −x 2 and noting that \(\sum _{k: t_k\le L_i}\lambda _{k0}/u_0(L_i,X_i)+ \beta _0^{\top } Z_{x_i}(L_i)/u_0(L_i,X_i)=1\). Second, applying the standard inequality log(x) ≥ 1 − 1∕x for any generic x > 0, we have

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mbox{log}\left(\frac{u_0(L_i,X_i)}{\sum_{t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)}\right)\geq 1-\frac{\sum_{t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)}{u_0(L_i,X_i)}, \end{array} \end{aligned} $$

and third,

$$\displaystyle \begin{aligned} \begin{array}{rcl} -\frac{u_0(L_i,X_i)}{\sum_{t_k\leq L_i}\lambda_k+\beta^{\top} Z_{x_i}(L_i)}& =&\displaystyle -u_0(L_i,X_i)\bigg\{\sum_{t_k\le L_i}\frac{\lambda_{k0}}{u_0(L_i,X_i)}\frac{u_0(L_i,X_i)}{\lambda_{k0}}\lambda_k\\ & &\displaystyle +\frac{\beta_0^{\top} Z_{x_i}(L_i)}{u_0(L_i,X_i)}\frac{u_0(L_i,X_i)}{\beta_0^{\top} Z_{x_i}(L_i)}\beta^{\top} Z_{x_i}(L_i)\bigg\}^{-1}\\ & \ge &\displaystyle - \bigg[ \sum_{t_k\le L_i} \frac{\lambda_{k0}^2}{u_0(L_i,X_i)}\lambda_k^{-1}+\frac{\{\beta_0^{\top} Z_{x_i}(L_i)\}^2}{u_0(L_i,X_i)}\{\beta^{\top} Z_{x_i}(L_i)\}^{-1}\bigg], \end{array} \end{aligned} $$

where, the last inequality is obtained by applying Jensen’s inequality on the concave function f(x) = −1∕x, and noting that \(\sum _{k: t_k\le L_i}\lambda _{k0}/u_0(L_i,X_i)+ \beta _0^{\top } Z_{x_i}(L_i)/u_0(L_i,X_i)=1\). Then, applying the last three inequalities in (7), we obtain \(\ell _1(\lambda ,\beta )\ge \ell _{1,\dagger }(\lambda ,\beta |\lambda _0,\beta _0)\equiv \sum _{k=1}^m\mathcal {M}_{1,1,k}(\lambda _k|\lambda _0,\beta _0)+\mathcal {M}_{1,2}(\beta |\lambda _0,\beta _0)+\mathcal {M}_{1,3}(\lambda _0,\beta _0)\), where for k = 1, …, m,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathcal{M}_{1,1,k}(\lambda_k|\lambda_0,\beta_0) & =&\displaystyle \sum_{i=1}^n\Delta_{L,i}\Bigg[\{A_1(u_0(L_i,X_i))+2A_2(u_0(L_i,X_i))u_0(L_i,X_i)\}\lambda_k\\ & &\displaystyle -A_2(u_0(L_i,X_i))\left\{\frac{u_0(L_i,X_i)}{\lambda_{k0}}\right\}\lambda_k^2-\frac{\lambda_k}{u_0(L_i,X_i)} \\ & &\displaystyle -\frac{\lambda_{k0}^2}{u_0(L_i,X_i)}\lambda_k^{-1}\Bigg]I(t_k\leq L_i), \end{array} \end{aligned} $$
$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathcal{M}_{1,2}(\beta|\lambda_0,\beta_0) & =&\displaystyle \sum_{i=1}^n\Delta_{L,i}\Bigg[\{A_1(u_0(L_i,X_i))+2A_2(u_0(L_i,X_i))u_0(L_i,X_i)\}\beta^{\top} Z_{x_i}(L_i)\\ & &\displaystyle -A_2(u_0(L_i,X_i))\frac{u_0(L_i,X_i)}{\beta_0^{\top} Z_{x_i}(L_i)}\{\beta^{\top} Z_{x_i}(L_i)\}^2-\frac{\beta^{\top} Z_{x_i}(L_i)}{u_0(L_i,X_i)}\\ & &\displaystyle -\frac{\{\beta_0^{\top} Z_{x_i}(L_i)\}^2}{u_0(L_i,X_i)}\{\beta^{\top} Z_{x_i}(L_i)\}^{-1}\Bigg], \end{array} \end{aligned} $$

and \( \mathcal {M}_{1,3}(\lambda _0,\beta _0)=\sum _{i=1}^n\Delta _{L,i}\{\mbox{log}[1-\mbox{exp}\{-u_0(L_i, X_i)\}]-A_1(u_0(L_i,X_i)) u_0(L_i,X_i)-A_2(u_0(L_i,X_i)) u_0^2(L_i,X_i)+1\} \). Next, consider finding the minorization function for ℓ 3(λ, β). Here, we use the same techniques as finding the minorization function for ℓ 1(λ, β). Note,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \ell_3(\lambda,\beta) & =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\mbox{log}\left(1-\mbox{exp}\left[-\sum_{k: L_i< t_k\leq R_i}\lambda_k-\beta^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\}\right]\right)\\ & =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\mbox{log}[1-\mbox{exp}\{-u(L_i,R_i, X_i)\}]\\ & =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\left(\mbox{log}[1-\mbox{exp}\{-u_0(L_i,R_i, X_i)\}]+\mbox{log}\left[\frac{1-\mbox{exp}\{-u(L_i,R_i, X_i)\}}{1-\mbox{exp}\{-u_0(L_i,R_i, X_i)\}}\right]\right). \end{array} \end{aligned} $$

Now applying Proposition 1 to the second term of the above display with τ = u(L i, R i, X i) and τ 0 = u 0(L i, R i, X i), we obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} \ell_3(\lambda,\beta)& \geq&\displaystyle \sum_{i=1}^n\Delta_{I,i}\bigg( \mbox{log}[1-\mbox{exp}\{-u_0(L_i,R_i X_i)\}] \\ & &\displaystyle + \{ u(L_i,R_i, X_i)-u_0(L_i,R_i, X_i)\} A_1(u_0(L_i,R_i, X_i)) \\ & &\displaystyle -\{ u(L_i,R_i, X_i)-u_0(L_i,R_i, X_i)\}^2 A_2(u_0(L_i,R_i, X_i))\\ & &\displaystyle + \mbox{log}\left\{ \frac{u_0(L_i,R_i, X_i)}{u(L_i,R_i, X_i)}\right\} +1 - \frac{u_0(L_i,R_i, X_i)}{u(L_i,R_i, X_i)} \bigg) \\ & =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\Bigg[\{A_1(u_0(L_i,R_i,X_i))+2A_2(u_0(L_i,R_i,X_i))u_0(L_i,R_i,X_i)\}u(L_i,R_i,X_i)\\ & &\displaystyle -A_2(u_0(L_i,R_i,X_i))u^2(L_i,R_i,X_i) \\ & &\displaystyle +\mbox{log}\left\{\frac{u_0(L_i,R_i,X_i)}{u(L_i,R_i,X_i)}\right\}-\frac{u_0(L_i,R_i,X_i)}{u(L_i,R_i,X_i)} +C_1(u_0(L_i,R_i,X_i))\Bigg]\\ & =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\Bigg[\{A_1(u_0(L_i,R_i,X_i))\\ & &\displaystyle +2A_2(u_0(L_i,R_i,X_i))u_0(L_i,R_i,X_i)\}\left(\sum_{k: L_i<t_k\leq R_i}\lambda_k+\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))\right)\\ & &\displaystyle -A_2(u_0(L_i,R_i,X_i))\left(\sum_{k: L_i<t_k\leq R_i}\lambda_k+\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))\right)^2\\ & &\displaystyle +\mbox{log}\left(\frac{u_0(L_i,R_i,X_i)}{ \sum_{k: L_i<t_k\leq R_i}\lambda_k+\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))} \right)\\ & &\displaystyle -\left(\frac{u_0(L_i,R_i,X_i)}{\sum_{k: L_i<t_k\leq R_i}\lambda_k+\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}\right)+C_1(u_0(L_i,R_i,X_i))\Bigg]{} \end{array} \end{aligned} $$
(8)

where, C 1(u 0(L i, R i, X i)) is the constant term that only depends on u 0(L i, R i, X i), given by \( C_1(u_0(L_i,R_i,X_i))=\mbox{log}[1-\mbox{exp}\{-u_0(L_i,R_i, X_i)\}]-A_1(u_0(L_i,R_i,X_i)) u_0(L_i,R_i,X_i)-A_2(u_0(L_i,R_i,X_i)) u_0^2(L_i,R_i,X_i)+1.\) Similarly, we have the following three inequalities,

$$\displaystyle \begin{aligned} \begin{array}{rcl} & -&\displaystyle \left(\sum_{L_i<t_k\leq R_i}\lambda_k+\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))\right)^2\\ & =&\displaystyle -\left(\sum_{L_i<t_k\le R_i}\frac{\lambda_{k0}}{u_0(L_i,R_i,X_i)}\frac{u_0(L_i,R_i,X_i)}{\lambda_{k0}}\lambda_k\right.\\ & &\displaystyle \left.+\frac{\beta_0^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}{u_0(L_i,R_i,X_i)}\frac{u_0(L_i,R_i,X_i)}{\beta_0^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}\beta_0^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))\right)^2\\ & \ge&\displaystyle -\bigg\{\sum_{L_i<t_k\leq R_i}\frac{u_0(L_i,R_i,X_i)}{\lambda_{k0}}\lambda_k^2+\frac{u_0(L_i,R_i,X_i)}{\beta_0^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}(\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i)))^2\bigg\}, \end{array} \end{aligned} $$
$$\displaystyle \begin{aligned} \begin{array}{rcl} \mbox{log}\left(\!\frac{u_0(L_i,R_i,X_i)}{\sum_{L_i<t_k\leq R_i}\!\lambda_k+\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}\!\right)\geq\! 1-\frac{\sum_{L_i<t_k\leq R_i}\!\lambda_k +\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}{u_0(L_i,R_i,X_i)}, \end{array} \end{aligned} $$

and

$$\displaystyle \begin{aligned} \begin{array}{rcl} & -&\displaystyle \frac{u_0(L_i,R_i,X_i)}{\sum_{L_i<t_k\leq R_i}\lambda_k+\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}\\ & =&\displaystyle -u_0(L_i,R_i,X_i)\bigg\{\sum_{L_i<t_k\leq R_i}\frac{\lambda_{k0}}{u_0(L_i,R_i,X_i)}\frac{u_0(L_i,R_i,X_i)}{\lambda_{k0}}\lambda_k\\ & &\displaystyle +\frac{\beta_0^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}{u_0(L_i,R_i,X_i)}\frac{u_0(L_i,R_i,X_i)}{\beta_0^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))}\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))\bigg\}^{-1}\\ & \ge &\displaystyle - \bigg[ \sum_{L_i<t_k\le R_i} \frac{\lambda_{k0}^2}{u_0(L_i,R_i,X_i)}\lambda_k^{-1}+\frac{\{\beta_0^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))\}^2}{u_0(L_i,R_i,X_i)}\{\beta^{\top} (Z_{x_i}(R_i)-Z_{x_i}(L_i))\}^{-1}\bigg], \end{array} \end{aligned} $$

where, the first and the third inequalities are obtained by applying Jensen’s inequality on the concave function f(x) = −x 2 and f(x) = −1∕x, respectively, and the second inequality is obtained by applying the standard inequality log(x) ≥ 1 − 1∕x. Applying the above two inequalities in (8), we obtain \(\ell _3(\lambda ,\beta )\ge \ell _{3,\dagger }(\lambda ,\beta |\lambda _0,\beta _0)\equiv \sum _{k=1}^m\mathcal {M}_{3,1,k}(\lambda _k|\lambda _0,\beta _0)+\mathcal {M}_{3,2}(\beta |\lambda _0,\beta _0)+\mathcal {M}_{3,3}(\lambda _0,\beta _0)\), where

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathcal{M}_{3,1,k}(\lambda_k|\lambda_0,\beta_0) & =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\Bigg[\{A_1(u_0(L_i,R_i,X_i))+2A_2(u_0(L_i,R_i,X_i))u_0(L_i,R_i,X_i)\}\lambda_k\\ & &\displaystyle -A_2(u_0(L_i,R_i,X_i))\left\{\frac{u_0(L_i,R_i,X_i)}{\lambda_{k0}}\right\}\lambda_k^2\\ & &\displaystyle -\frac{\lambda_k}{u_0(L_i,R_i,X_i)}-\frac{\lambda_{k0}^2}{u_0(L_i,R_i,X_i)}\lambda_k^{-1}\Bigg]I(L_i< t_k\le R_i),\!\!\quad k=1,\ldots,m, \end{array} \end{aligned} $$
$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathcal{M}_{3,2}(\beta|\lambda_0,\beta_0) & =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\Bigg(\{A_1(u_0(L_i,R_i,X_i))+2A_2(u_0(L_i,R_i,X_i))u_0(L_i,R_i,X_i)\}\\ & &\displaystyle \times \beta^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\} \\ & &\displaystyle -A_2(u_0(L_i,R_i,X_i))\frac{u_0(L_i,R_i,X_i)[\beta^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\}]^2}{\beta_0^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\}}\\ & &\displaystyle -\frac{\beta^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\}}{u_0(L_i,R_i,X_i)} -\frac{[\beta_0^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\}]^2}{u_0(L_i,R_i,X_i) \beta^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\} } \Bigg), \end{array} \end{aligned} $$

and

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathcal{M}_{3,3}(\lambda_0,\beta_0)& =&\displaystyle \sum_{i=1}^n\Delta_{I,i}\Bigg[\mbox{log}\left\{1-\mbox{exp}\left(-\left[\sum_{L_i< t_k\leq R_i}\lambda_k+\beta^{\top} \{Z_{x_i}(R_i)-Z_{x_i}(L_i)\}\right]\right)\right\}\\ & &\displaystyle -A_1(u_0(L_i,R_i,X_i))u_0(L_i,R_i,X_i)-A_2(u_0(L_i,R_i,X_i))u_0^2(L_i,R_i,X_i)+1\Bigg]. \end{array} \end{aligned} $$

Finally, we obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} \ell(\lambda, \beta)& =&\displaystyle \ell_1(\lambda, \beta)+ \ell_2(\lambda, \beta)+\ell_3(\lambda, \beta)\\ & \geq&\displaystyle \ell_{\dagger}(\lambda,\beta|\lambda_0,\beta_0)\\ & \equiv&\displaystyle \ell_{1,\dagger}(\lambda,\beta|\lambda_0,\beta_0)+\ell_2(\lambda, \beta)+\ell_{3,\dagger}(\lambda,\beta|\lambda_0,\beta_0)\\ & =&\displaystyle \sum_{k=1}^m\mathcal{M}_{1,1,k}(\lambda_k|\lambda_0,\beta_0)+\mathcal{M}_{1,2}(\beta|\lambda_0,\beta_0)+\mathcal{M}_{1,3}(\lambda_0,\beta_0)+\ell_2(\lambda, \beta)\\ & &\displaystyle +\sum_{k=1}^m\mathcal{M}_{3,1,k}(\lambda_k|\lambda_0,\beta_0)+\mathcal{M}_{3,2}(\beta|\lambda_0,\beta_0)+\mathcal{M}_{3,3}(\lambda_0,\beta_0)\\ & \equiv &\displaystyle \sum_{k=1}^m\mathcal{M}_{1,k}(\lambda_k|\lambda_0,\beta_0)+\mathcal{M}_2(\beta|\lambda_0,\beta_0)+\mathcal{M}_3(\lambda_0,\beta_0), \end{array} \end{aligned} $$

where \( \mathcal {M}_{1,k}(\lambda _k|\lambda _0,\beta _0) = \mathcal {M}_{1,1,k}(\lambda _k|\lambda _0,\beta _0)+ \mathcal {M}_{3,1,k}(\lambda _k|\lambda _0,\beta _0)- \lambda _k\sum ^n_{i=1} \Delta _{I, i} I(t_k\leq L_i) \), \( \mathcal {M}_{2}(\beta |\lambda _0,\beta _0) = \mathcal {M}_{1, 2}(\beta |\lambda _0,\beta _0)+ \mathcal {M}_{3, 2}(\beta |\lambda _0,\beta _0)- \sum _{i=1}^n\Delta _{I,i}\beta ^{\top } Z_{x_i} (L_i)\), and \(\mathcal {M}_3(\lambda _0,\beta _0) = \mathcal {M}_{1, 3}(\lambda _0,\beta _0) +\mathcal {M}_{3, 3}(\lambda _0,\beta _0)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, T., Bandyopadhyay, D., Sinha, S. (2022). Efficient Estimation of the Additive Risks Model for Interval-Censored Data. In: Sun, J., Chen, DG. (eds) Emerging Topics in Modeling Interval-Censored Survival Data. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-12366-5_9

Download citation

Publish with us

Policies and ethics