Skip to main content

Finite Element Model of Smart Composite Steel Plate Shear Walls

A Case Study of Distance Between Shear Studs

  • Conference paper
  • First Online:
Proceedings of SECON'22 (SECON 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 284))

  • 506 Accesses

Abstract

The composite shear wall is having various merits over the traditional reinforced concrete walls. As a result of this, several experimental studies have been reported in the literature in order to study the seismic behavior of composite shear walls. On the other hand, very, few numerical investigations found in the previous literature because of the involvement of complexities at the interaction behavior of steel and concrete. Therefore, the objective of the present paper is to present a numerical study on Smart composite shear walls which is having an infilled steel plate and concrete. The study is carried out using the ANSYS software. The mechanical mechanisms between the web plate and concrete have been investigated thoroughly. The results obtained from the FE analysis shows very good agreement with the test results, in terms of the hysteresis curves, failure behavior, ultimate strength, initial stiffness, and ductility. The present numerical investigations were focused on the effects of the gap and the distance between the shear stud on the CSPSW behavior. The results indicate that increasing the gap between steel plate and concrete wall from 0 to 4% from the width improved the stiffness by 18% as compared with the reference model, which led to delay failures of this model. Changing the distance between shear studs from (20 to 25%) from width enhanced the ductility and energy absorption with ratios (66, 32%), respectively, compared with the reference model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramesh, S.: Behavior and Design of Earthquake-Resistant Dual-Plate Composite Shear Wall Systems. Purdue University, West Lafayette (2013)

    Google Scholar 

  2. Bruneau, M., Alzeni, Y., Fouché, P.: Seismic behavior of concrete-filled steel sandwich walls and concrete-filled steel tube columns. In: Steel Innovations Conference 2013 (2013)

    Google Scholar 

  3. Yan, J.B., Yan, Y.Y., Wang, T.: Cyclic tests on novel steel-concrete-steel sandwich shear walls with boundary CFST columns. J. Constr. Steel Res. 164, 105760 (2020). https://doi.org/10.1016/j.jcsr.2019.105760

    Article  Google Scholar 

  4. Liu, Y., Zhou, Z., Cao, W., Wei, L.: Study on seismic performance of the masonry wall with lightweight concrete filled steel tube core column and thermal-insulation sandwich. J. Earthquake Eng. Eng. Vib. 15 (2016). https://doi.org/10.13197/j.eeev.2015.01.223.liuy.027

  5. ASCE 7 Minimum Design Loads for Buildings and Other Structures (2022)

    Google Scholar 

  6. AISC American Institute of Steel Construction - Seismic Provisions for Structural Steel Buildings. Seismic Provisions for Structural Steel Buildings (2010)

    Google Scholar 

  7. Nie, X., Wang, J.J., Tao, M.X., Fan, J.S., Bu, F.M.: Experimental study of flexural critical reinforced concrete filled composite plate shear walls. Eng. Struct. 197, 109439 (2019). https://doi.org/10.1016/j.engstruct.2019.109439

  8. Othuman Mydin, M.A., Wang, Y.C.: Structural performance of lightweight steel-foamed concretesteel composite walling system under compression. Thin-Walled Struct. 49, 66–76 (2011). https://doi.org/10.1016/j.tws.2010.08.007

    Article  Google Scholar 

  9. Wright, H.: Axial and bending behavior of composite walls. J. Struct. Eng. 124, 758–764 (1998). https://doi.org/10.1061/(asce)0733-9445(1998)124:7(758)

    Article  Google Scholar 

  10. Wang, M.Z., Guo, Y.L., Zhu, J.S., Yang, X.: Flexural-torsional buckling and design recommendations of axially loaded concrete-infilled double steel corrugated-plate walls with T-section. Eng. Struct. 208, 110345 (2020). https://doi.org/10.1016/j.engstruct.2020.110345

  11. Zhang, X., Qin, Y., Chen, Z.: Experimental seismic behavior of innovative composite shear walls. J. Constr. Steel Res. 116, 218–232 (2016). https://doi.org/10.1016/j.jcsr.2015.09.015

    Article  Google Scholar 

  12. Zhang, W., Wang, K., Chen, Y., Ding, Y.: Experimental study on the seismic behaviour of composite shear walls with stiffened steel plates and infilled concrete. Thin-Walled Struct. 144, 106279 (2019). https://doi.org/10.1016/j.tws.2019.106279

  13. Najem, M.H.: Influence of concrete strength on the cycle performance of composite steel plate shear walls. DJES 11, 1–7 (2018). https://doi.org/10.24237/djes.2018.11401

  14. Najem, M.H.: The effect of infill steel plate thickness on the cycle behavior of steel plate shear walls. DJES 11, 1–6 (2018). https://doi.org/10.24237/djes.2018.11301

  15. Nguyen, N.H.; Whittaker, A.S. Numerical modelling of steel-plate concrete composite shear walls. Eng. Struct. 2017, 150 (2017). https://doi.org/10.1016/j.engstruct.2017.06.030.

  16. Epackachi, S., Whittaker, A.S., Varma, A.H., Kurt, E.G.: Finite element modeling of steel-plate concrete composite wall piers. Eng. Struct. 100 (2015). https://doi.org/10.1016/j.engstruct.2015.06.023

  17. Rafiei, S., Hossain, K.M.A. Lachemi, M., Behdinan, K., Anwar, M.S.: Finite element modeling of double skin profiled composite shear wall system under in-plane loadings. Eng. Struct. 56 (2013). https://doi.org/10.1016/j.engstruct.2013.04.014

  18. Wei, F.F., Zheng, Z.J., Yu, J., Wang, Y.Q.: Computational method for axial compression capacity of double steel-concrete composite shear walls with consideration of buckling. Gongcheng Lixue/Eng. Mech. 36 (2019). https://doi.org/10.6052/j.issn.1000-4750.2017.12.0938.

  19. Guo, L. Wang, Y., Zhang, S.: Experimental study of rectangular multi-partition steel-concrete composite shear walls. Thin-Walled Struct. 130 (2018). https://doi.org/10.1016/j.tws.2018.06.011

  20. Wang, M.Z., Guo, Y.L., Zhu, J.S., Yang, X.: Flexural buckling of axially loaded concrete-infilled double steel corrugated-plate walls with T-section. J. Constr. Steel Res. 166 (2020)

    Google Scholar 

  21. Shafaei, S., Ayazi, A., Farahbod, F.: The effect of concrete panel thickness upon composite steel plate shear walls. J. Constr. Steel Res. 117, 81–90 (2016) . https://doi.org/10.1016/j.jcsr.2015.10.006.

  22. Qin, Y., Shu, G.P., Zhou, G.G., Han, J.H.: Compressive behavior of double skin composite wall with different plate thicknesses. J. Constr. Steel Res. 157, 297–313 (2019). https://doi.org/10.1016/j.jcsr.2019.02.023

    Article  Google Scholar 

  23. Huang, Z., Liew, J.Y.R.: Structural behaviour of steel-concrete-steel sandwich composite wall subjected to compression and end moment. Thin-Walled Struct. 98, 592–606 (2018). https://doi.org/10.1016/j.tws.2015.10.013

    Article  Google Scholar 

  24. Li, X., Li, X.: Steel plates and concrete filled composite shear walls related nuclear structural engineering: experimental study for out-of-plane cyclic loading. Nucl. Eng. Design 315, 144–154 (2017). https://doi.org/10.1016/j.nucengdes.2017.02.019

    Article  Google Scholar 

  25. Epackachi, S., Nguyen, N.H., Kurt, E.G., Whittaker, A.S., Varma, A.H.: In-plane seismic behavior of rectangular steel-plate composite wall piers. J. Struct. Eng. 141 (2015). https://doi.org/10.1061/(asce)st.1943-541x.0001148.

  26. JGJ/T 380 Technical specification for steel plate shear walls. Ministry of Housing and Urban-Rural Development, Beijing (2015)

    Google Scholar 

  27. ACI committee 318 building code requirements for structural concrete and commentary (ACI 318M-11) (2011)

    Google Scholar 

  28. ANSI/AISC N690–18 Specification for safety-related steel structures for nuclear facilities. Am. instit. Steel Constr. (2018)

    Google Scholar 

  29. Epackachi, S., Nguyen, N., Kurt, E.G.,  Whittaker, A., Varma, A.H.: An experimental study of the in-plane response of steel-concrete composite walls. In: Proceedings of the 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT-22), San Francisco, California, USA, 18 August 2013 (2013)

    Google Scholar 

  30. Yan, J.B., Liew, J.Y.R., Zhang, M.H., Sohel, K.M.A.: Experimental and analytical study on ultimate strength behavior of steel–concrete–steel sandwich composite beam structures. Mater. Struct./Materiaux et Constructions 48 (2015). https://doi.org/10.1617/s11527-014-0252-4.

  31. Rahai, A., Hatami, F.: Evaluation of composite shear wall behavior under cyclic loadings. J. Constr. Steel Res. 65, 1528–1537 (2009). https://doi.org/10.1016/j.jcsr.2009.03.011

    Article  Google Scholar 

  32. Li, Q., He, Y., Zhou, K., Han, X., He, Y., Shu, Z.: Structural health monitoring for a 600 m high skyscraper. Struct. Des. Tall Spec. Build. 27 (2018). https://doi.org/10.1002/tal.1490.

  33. Wang, R., Cao, W.L., Yin, F., Dong, H.Y.: Experimental and numerical study regarding a fabricated CFST frame composite wall structure. J. Constr. Steel Res. 162, 105718 (2019). https://doi.org/10.1016/j.jcsr.2019.105718

  34. Tong, J.Z., Yu, C.Q., Zhang, L.: Sectional strength and design of double-skin composite walls withre-entrant profiled faceplates. Thin-Walled Struct. 158 (2021). https://doi.org/10.1016/j.tws.2020.107196

  35. Zhao, Q., Astaneh-Asl, A.: Cyclic behavior of traditional and innovative composite shear walls. J. Struct. Eng. 130 (2004). https://doi.org/10.1061/(asce)0733-9445(2004)130:2(271).

  36. Luo, Y., Guo, X., Li, J., Xiong, Z., Meng, L., Dong, N., Zhang, J.: Experimental research on seismic behaviour of the concrete-filled double-steel-plate composite wall. Adv. Struct. Eng. 18, 1845–1858 (2015). https://doi.org/10.1260/1369-4332.18.11.1845

    Article  Google Scholar 

  37. Huang, S.T., Huang, Y.S., He, A., Tang, X.L., Chen, Q.J., Liu, X., Cai, J.: Experimental study on seismic behaviour of an innovative composite shear wall. J. Constr. Steel Res. 148, 165–179 (2018). https://doi.org/10.1016/j.jcsr.2018.05.003

    Article  Google Scholar 

  38. Nie, J.G., Hu, H.S., Fan, J.S., Tao, M.X., Li, S.Y., Liu, F.J.: Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls. J. Constr. Steel Res. 88, 206–219 (2013). https://doi.org/10.1016/j.jcsr.2013.05.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadee Mohammed Najm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Najm, H.M., Kouadri, S., Khalaf, M.S. (2023). Finite Element Model of Smart Composite Steel Plate Shear Walls. In: Marano, G.C., Rahul, A.V., Antony, J., Unni Kartha, G., Kavitha, P.E., Preethi, M. (eds) Proceedings of SECON'22. SECON 2022. Lecture Notes in Civil Engineering, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-031-12011-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12011-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12010-7

  • Online ISBN: 978-3-031-12011-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics