Skip to main content

Gut Microbiota and Chronic Kidney Disease

  • Chapter
  • First Online:
Innovations in Nephrology

Abstract

The human microbiome, a term derived from the Greek mikros (small) and Latin, bio (life) and oma (group or mass), is characterized by a set of microorganisms, their genomes, and the environmental conditions present in tissues and different parts of the human body [4]. There is extensive search to understand the human microbiome, its metabolites, its action on the host, and the importance of the complexity of these relationships in health and disease. Thus, advances in high-throughput sequencing methods have paved the way for decoding bacterial genomes from different parts of the human body, a fundamental basis for microbiome analysis. Besides, the use of new technologies, especially those related to “omics” technologies—genomics, proteomics, metabolomics, and others [5]. There is a connection between intestines and kidneys that can be classified into metabolic and immunological pathways. In the metabolic pathway, mediated by metabolites produced by the gut microbiota, an inadequate diet is the possible inducer, resulting in a high production and accumulation of toxic substances, called uremic toxins (UTs) in the intestinal environment, such as indoxyl sulfate (IS) and para-cresyl sulfate (PCS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosola C, Rocchetti M, Sabatino A, et al. Microbiota issue in CKD: how promising are gut-targeted approaches? J Nephrol. 2019;32(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  2. Ammirati A. Chronic kidney disease. Rev Assoc Med Bras. 2020;66:s03–9. https://doi.org/10.1590/1806-9282.66.S1.3.

    Article  Google Scholar 

  3. Aguiar L, Prado R, Gazzinelli A, Malta D. Fatores associados à doença renal crônica: inquérito epidemiológico da pesquisa nacional de saúde. Rev Bras Epidemiol. 2020;23. https://doi.org/10.1590/1980-549720200044.

  4. Requena T, Velasco M. Microbioma humano en la salud y la enfermedad. Rev Clin Esp. 2021;221(4):233–40. https://doi.org/10.1016/j.rce.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  5. Di Renzo L, Gualtieri P, Romano L, et al. Role of personalized nutrition in chronic-degenerative diseases. Nutrients. 2019;11(8):1707. https://doi.org/10.3390/nu11081707.

    Article  CAS  PubMed Central  Google Scholar 

  6. Perez-Muñoz M, Arrieta M, Ramer-Tait A, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):1–19. https://doi.org/10.1186/s40168-017-0268-4.

    Article  Google Scholar 

  7. Schoenmakers S, Steegers-Theunissen R, Faas M. The matter of the reproductive microbiome. Obstet Med. 2019;12:107–15.

    Article  PubMed  Google Scholar 

  8. Ferretti P, Pasolli E, Tett A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24(1):133–45. https://doi.org/10.1016/j.chom.2018.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noce A, Marrone G, Di Daniele F, et al. Impact of gut microbiota composition on onset and progression of chronic non-communicable diseases. Nutrients. 2019;11(5):1073. https://doi.org/10.3390/nu11051073.

    Article  CAS  PubMed Central  Google Scholar 

  10. Luca M, Di Mauro M, Di Mauro M. Luca a gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid Med Cell Longev. 2019;2019:4730539. https://doi.org/10.1155/2019/4730539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagano T, Otoshi T, Hazama D, et al. Novel cancer therapy targeting microbiome. Onco Targets Ther. 2019;12:3619. https://doi.org/10.2147/OTT.S207546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knauf F, Brewer J, Flavell R. Immunity, microbiota and kidney disease. Nat Rev Nephrol. 2019;15(5):263–74. https://doi.org/10.1038/s41581-019-0118-7.

    Article  PubMed  Google Scholar 

  13. World Health Organization. World health statistics 2019: monitoring health for the SDGs, sustainable development goals. World Health Organization; 2019.

    Google Scholar 

  14. Yang T, Richards E, Pepine C, Raizada M. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 2018;14(7):442–56. https://doi.org/10.1038/s41581-018-0018-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pereira M, Gouveia F. Modulação intestinal:fundamentos e estratégias práticas. 1st ed. Brasília; 2019.

    Google Scholar 

  16. Otten J, Ryberg M, Mellberg C, et al. Postprandial levels of GLP-1, GIP and glucagon after 2 years of weight loss with a paleolithic diet: a randomised controlled trial in healthy obese women. Eur J Endocrinol. 2019;180(6):417–27. https://doi.org/10.1530/EJE-19-0082.

    Article  CAS  PubMed  Google Scholar 

  17. Ghaedi E, Mohammadi M, Mohammadi H, et al. Effects of a paleolithic diet on cardiovascular disease risk factors: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2019;10(4):634–46.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Churuangsuk C, Griffiths D, Lean M. Impacts of carbohydrate-restricted diets on micronutrient intakes and status: a systematic review. Obes Rev. 2019;20(8):1132–47. https://doi.org/10.1111/obr.12857.

    Article  CAS  PubMed  Google Scholar 

  19. Challa H, Bandlamudi M, Uppaluri K. Paleolithic diet. Treasure Island, FL: StatPearls; 2020. https://www.ncbi.nlm.nih.gov/books/NBK482457. Accessed 1 Dec 2021.

    Google Scholar 

  20. Dufour D, Piperata B. Reflections on nutrition in biological anthropology. Am J Phys Anthropol. 2018;165(4):855–64. https://doi.org/10.1002/ajpa.23370.

    Article  PubMed  Google Scholar 

  21. Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 2019;12:2221. https://doi.org/10.2147/DMSO.S216791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Requena T, Martínez-Cuesta M, Peláez C. Diet and microbiota linked in health and disease. Food Funct. 2018;9(2):688–704. https://doi.org/10.1039/C7FO01820G.

    Article  CAS  PubMed  Google Scholar 

  23. Rampelli S, Schnorr S, Consolandi C, et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol. 2015;25(13):1682–93. https://doi.org/10.1016/j.cub.2015.04.055.

    Article  CAS  PubMed  Google Scholar 

  24. Schnorr S, Candela M, Rampelli S, et al. Microbioma intestinal dos caçadores-coletores de hadza. Nat Commun. 2014;5:3654.

    Article  CAS  PubMed  Google Scholar 

  25. Quercia S, Candela M, Giuliani C, et al. From lifetime to evolution: timescales of human gut microbiota adaptation. Front Microbiol. 2014;5:587. https://doi.org/10.3389/fmicb.2014.00587.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jamka M, Kulczyński B, Juruć A, et al. The effect of the paleolithic diet vs. healthy diets on glucose and insulin homeostasis: a systematic review and meta-analysis of randomized controlled trials. J Clin Med. 2020;9(2):296. https://doi.org/10.3390/jcm9020296.

    Article  CAS  PubMed Central  Google Scholar 

  27. Barone M, Turroni S, Rampelli S, et al. Gut microbiome response to a modern paleolithic diet in a western lifestyle context. PLoS One. 2019;14(8):e0220619. https://doi.org/10.1371/journal.pone.0220619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jonsson T, Granfeldt Y, Ahren B, et al. Beneficial effects of a paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol. 2009;8:35. https://doi.org/10.1186/1475-2840-8-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mellberg C, Sandberg S, Ryberg M, et al. Long-term effects of a palaeolithic-type diet in obese postmenopausal women: a 2-year randomized trial. Eur J Clin Nutr. 2014;68(3):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Otten J, Stomby A, Waling M, et al. Benefits of a paleolithic diet with and without supervised exercise on fat mass, insulin sensitivity, and glycemic control: a randomized controlled trial in individuals with type 2 diabetes. Diabetes Metab Res Rev. 2017;33(1):e2828. https://doi.org/10.1002/dmrr.2828.

    Article  CAS  Google Scholar 

  31. Weiss G, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–77. https://doi.org/10.1007/s00018-017-2509-x.

    Article  CAS  PubMed  Google Scholar 

  32. Tang W, Bäckhed F, Landmesser U, Hazen S. Gut microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(16):2089–105.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tilg H, Zmora N, Adolph T, Elinav E. The gut microbiota fueling metabolic inflammation. Nat Rev Immunol. 2020;20(1):40–54. https://doi.org/10.1038/s41577-019-0198-4.

    Article  CAS  PubMed  Google Scholar 

  34. Pushpanathan P, Mathew G, Selvarajan S, et al. Gut microbiota and its mysteries. Indian J Med Microbiol. 2019;37(2):268–77. https://doi.org/10.4103/ijmm.IJMM_19_373.

    Article  PubMed  Google Scholar 

  35. Sochocka M, Donskow-Łysoniewska K, Diniz B, et al. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol Neurobiol. 2019;56(3):1841–51. https://doi.org/10.1007/s12035-018-1188-4.

    Article  CAS  PubMed  Google Scholar 

  36. Ristov I, Vaz I, Guimarães V, et al. Relação do eixo intestino-cérebro e suas influências no corpo. Anais da Mostra de Saúde. 2017. http://anais.unievangelica.edu.br/index.php/medicina/article/view/154. Accessed 1 Dec 2021.

  37. Zorzo R. Impacto do microbioma intestinal no eixo cérebro-intestino. Int J Nutrol. 2017;10:S298–305. https://doi.org/10.1055/s-0040-1705652.

    Article  Google Scholar 

  38. Tang W, Hazen S. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124(10):4204–11. https://doi.org/10.1172/JCI72331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang W, Kitai T, Hazen S. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96. https://doi.org/10.1161/CIRCRESAHA.117.309715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu W, Tomino Y, Lu K. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of AST-120. Toxins. 2018;10(9):367. https://doi.org/10.3390/toxins10090367.

    Article  CAS  PubMed Central  Google Scholar 

  41. Andrade L, Ramos C, Cuppari L. The cross-talk between the kidney and the gut: implications for chronic kidney disease. Forum Nutr. 2017;42(1):1–14. https://doi.org/10.1186/s41110-017-0054-x.

    Article  CAS  Google Scholar 

  42. Deltombe O, Van Biesen W, Glorieux G. Exploring protein binding of uremic toxins in patients with different stages of chronic kidney disease and during hemodialysis. Toxins. 2015;7(10):3933–46. https://doi.org/10.3390/toxins7103933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikusic N, Kouyoumdzian N, Choi M. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflügers Arch Eur J Physiol. 2020;472(3):303–20. https://doi.org/10.1007/s00424-020-02352-x.

    Article  CAS  Google Scholar 

  44. Ryan K, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8. https://doi.org/10.1038/nature13135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38. https://doi.org/10.1016/j.cmet.2015.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol. 2017;15(1):1–12. https://doi.org/10.1186/s12915-017-0454-7.

    Article  Google Scholar 

  47. Gómez-López A. Microbiome, health and illnesses: probiotics, prebiotics and synbiotics. Biomedica. 2019;39(4):617–21.

    PubMed Central  Google Scholar 

  48. Guarner F, Sanders M, Eliakim R, et al. Diretrizes Mundiais da Organização Mundial de Gastroenterologia. Milwaukee, WI: World Gastroenterology Organisation; 2017.

    Google Scholar 

  49. Long-Smith C, O'Riordan K, Clarke G, et al. Microbiota-gut-brain axis: new therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2020;60:477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628.

    Article  CAS  PubMed  Google Scholar 

  50. Kyrochristos I, Ziogas D, Goussia A. Bulk and single-cell next-generation sequencing: individualizing treatment for colorectal cancer. Cancer. 2019;11(11):1809. https://doi.org/10.3390/cancers11111809.

    Article  CAS  Google Scholar 

  51. Petersdorf E, O'hUigin C. The MHC in the era of next-generation sequencing: implications for bridging structure with function. Hum Immunol. 2019;80(1):67–78. https://doi.org/10.1016/j.humimm.2018.10.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Augusto Ferreira Carioca .

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carioca, A.A.F., da Silva Sales, S., de Melo, B.R.C. (2022). Gut Microbiota and Chronic Kidney Disease. In: Bezerra da Silva Junior, G., Nangaku, M. (eds) Innovations in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-031-11570-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11570-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11569-1

  • Online ISBN: 978-3-031-11570-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics