Skip to main content

(Bio)electrodes on Paper Platforms as Simple and Portable Analytical Tools for Bioanalytical Applications

  • Chapter
  • First Online:
Advances in Bioelectrochemistry Volume 5

Abstract

Conductive material based on carbon particles is the most usual structure fully incorporated upon cellulose microfibers due to intrinsic properties such as low-electrical resistivity, accessibility, low-cost, dispersion on solvents, and high-contact surface. In this chapter, we introduced the most popular examples of microfabrication protocols for manufacturing paper-based electrodes. The procedure step-by-step for transferring or creating conductive sites on a paper will be indicated. In addition, this chapter also discusses in detail the main examples reported in literature associated with paper-based electrodes and bioanalytical applications. Some strategies of electrode modification, redox activities, and electrochemical analysis involving biomarkers of diabetes, cancer, Alzheimer’s disease, and COVID-19 will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stefano JS, Orzari LO, Silva-Neto HA, de Ataíde VN, Mendes LF, Coltro WKT, Paixão TRLC, Janegitz BC (2022) Different approaches for fabrication of low-cost electrochemical sensors. Curr Opin Electrochem 32:100893. https://doi.org/10.1016/j.coelec.2021.100893

    Article  CAS  Google Scholar 

  2. Ataide VN, Mendes LF, Gama LILM, de Araujo WR, Paixão TRLC (2020) Electrochemical paper-based analytical devices: ten years of development. Anal Methods 12:1030–1054. https://doi.org/10.1039/c9ay02350j

    Article  Google Scholar 

  3. Giuliani JG, Benavidez TE, Duran GM, Vinogradova E, Rios A, Garcia CD (2016) Development and characterization of carbon based electrodes from pyrolyzed paper for biosensing applications. J Electroanal Chem 765:8–15. https://doi.org/10.1016/j.jelechem.2015.07.055

    Article  CAS  Google Scholar 

  4. Torrinha Á, Morais S (2021) Electrochemical (bio)sensors based on carbon cloth and carbon paper: an overview. TrAC—Trends Anal Chem 142. https://doi.org/10.1016/j.trac.2021.116324

  5. Ozer T, McMahon C, Henry CS (2020) Advances in paper-based analytical devices. Annu Rev Anal Chem 13:85–109. https://doi.org/10.1146/annurev-anchem-061318-114845

    Article  Google Scholar 

  6. Liana DD, Raguse B, Justin Gooding J, Chow E (2012) Recent advances in paper-based sensors. Sensors 12:11505–11526. https://doi.org/10.3390/s120911505

    Article  CAS  Google Scholar 

  7. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826

    Article  CAS  Google Scholar 

  8. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483. https://doi.org/10.1039/b917150a

    Article  CAS  Google Scholar 

  9. Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595. https://doi.org/10.1007/s00216-013-6911-4

    Article  CAS  Google Scholar 

  10. Afonso AS, Uliana CV, Martucci DH, Faria RC (2016) Simple and rapid fabrication of disposable carbon-based electrochemical cells using an electronic craft cutter for sensor and biosensor applications. Talanta 146:381–387. https://doi.org/10.1016/j.talanta.2015.09.002

    Article  CAS  Google Scholar 

  11. Dossi N, Petrazzi S, Terzi F, Toniolo R, Bontempelli G (2019) Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices. Talanta 199:14–20. https://doi.org/10.1016/j.talanta.2019.01.126

    Article  CAS  Google Scholar 

  12. de Araujo, Reis W, Frasson CMR, Ameku WA, Silva JR, Angnes L, Paixão TRLC (2017)Single-step reagentlesslaser scribing fabrication of electrochemical paper-based analytical devices. Angewandte Chemie—Int Edition, 15309–15313

    Google Scholar 

  13. Solhi E, Hasanzadeh M, Babaie P (2020) Electrochemical paper-based analytical devices (ePADs) toward biosensing: Recent advances and challenges in bioanalysis. Anal Methods 12:1398–1414. https://doi.org/10.1039/d0ay00117a

    Article  CAS  Google Scholar 

  14. Mettakoonpitak J, Volckens J, Henry CS (2020) Janus electrochemical paper-based analytical devices for metals detection in aerosol samples. Anal Chem 92:1439–1446. https://doi.org/10.1021/acs.analchem.9b04632

    Article  CAS  Google Scholar 

  15. Silva-Neto HA, Cardoso TMG, McMahon CJ, Sgobbi LF, Henry CS, Coltro WKT (2021) Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals†. Analyst 146. https://doi.org/10.1039/d1an00176k

  16. Noviana E, McCord C, Clark K, Jang I, Henry C (2019) Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab on a Chip. https://doi.org/10.1039/C9LC00903E

  17. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011. https://doi.org/10.1155/2011/837875

  18. Mahadeva SK, Walus K, Stoeber B (2015) Paper as a platform for sensing applications and other devices: A review. ACS Appl Mater Interfaces 7:8345–8362. https://doi.org/10.1021/acsami.5b00373

    Article  CAS  Google Scholar 

  19. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R (2021) Preparation of cellulose-based hydrogel: a review. J Market Res 10:935–952. https://doi.org/10.1016/j.jmrt.2020.12.012

    Article  CAS  Google Scholar 

  20. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem 119:1340–1342. https://doi.org/10.1002/ange.200603817

    Article  Google Scholar 

  21. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC—Trends Anal Chem 28:925–942. https://doi.org/10.1016/j.trac.2009.05.005

    Article  CAS  Google Scholar 

  22. Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52:387–400. https://doi.org/10.1016/j.foodres.2010.05.016

    Article  CAS  Google Scholar 

  23. de Oliveira TR, Fonseca WT, de Oliveira SG, Faria RC (2019) Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes. Talanta 195:480–489. https://doi.org/10.1016/j.talanta.2018.11.047

    Article  CAS  Google Scholar 

  24. Melo Henrique J, Rocha Camargo J, Gabriel de Oliveira G, Santos Stefano J, Campos Janegitz B (2021) Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection. Microchem J 170. https://doi.org/10.1016/j.microc.2021.106701

  25. Camargo JR, Andreotti IAA, Kalinke C, Henrique JM, Bonacin JA, Janegitz BC (2020) Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta 208:120458. https://doi.org/10.1016/j.talanta.2019.120458

    Article  CAS  Google Scholar 

  26. Fava EL, Silva TA, do Prado TM, de Moraes FC, Faria RC, Fatibello-Filho O (2019) Electrochemical paper-based microfluidic device for high throughput multiplexed analysis. Talanta 203:280–286. https://doi.org/10.1016/j.talanta.2019.05.081

  27. Kava AA, Henry CS (2021) Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes. Talanta 221:121553. https://doi.org/10.1016/j.talanta.2020.121553

    Article  CAS  Google Scholar 

  28. Pradela-Filho LA, Araújo DAG, Takeuchi RM, Santos AL (2017) Nail polish and carbon powder: an attractive mixture to prepare paper-based electrodes. Electrochim Acta 258:786–792. https://doi.org/10.1016/j.electacta.2017.11.127

    Article  CAS  Google Scholar 

  29. Pradela-Filho LA, Andreotti IAA, Carvalho JHS, Araújo DAG, Orzari LO, Gatti A, Takeuchi RM, Santos AL, Janegitz BC (2020) Glass varnish-based carbon conductive ink: a new way to produce disposable electrochemical sensors. Sens Actuators, B Chem 305:127433. https://doi.org/10.1016/j.snb.2019.127433

    Article  CAS  Google Scholar 

  30. Santhiago M, Bernardes JS, Pereira MP, Oliveira JM, Strauss M, Bufon CCB (2017) Flexible and foldable fully-printed carbon black conductive nanostructures on paper for high-performance electronic, electrochemical, and wearable devices. ACS Appl Mater Interfaces 9:24365–24372. https://doi.org/10.1021/acsami.7b06598

    Article  CAS  Google Scholar 

  31. Noviana E, McCord CP, Clark KM, Jang I, Henry CS (2020) Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip 20:9–34. https://doi.org/10.1039/c9lc00903e

    Article  CAS  Google Scholar 

  32. Araújo DAG, Camargo JR, Pradela-Filho LA, Lima AP, Muñoz RAA, Takeuchi RM, Janegitz BC, Santos AL (2020) A lab-made screen-printed electrode as a platform to study the effect of the size and functionalization of carbon nanotubes on the voltammetric determination of caffeic acid. Microchem J 158:105297. https://doi.org/10.1016/j.microc.2020.105297

    Article  CAS  Google Scholar 

  33. Camargo JR, Orzari LO, Araújo DAG, de Oliveira PR, Kalinke C, Rocha DP, Luiz dos Santos A, Takeuchi RM, Munoz RAA, Bonacin JA, Janegitz BC (2021) Development of conductive inks for electrochemical sensors and biosensors. Microchem J 164. https://doi.org/10.1016/j.microc.2021.105998

  34. Wang CC, Hennek JW, Ainla A, Kumar AA, Lan WJ, Im J, Smith BS, Zhao M, Whitesides GM (2016) A paper-based pop-up electrochemical device for analysis of beta-hydroxybutyrate. Anal Chem 88:6326–6333. https://doi.org/10.1021/acs.analchem.6b00568

    Article  CAS  Google Scholar 

  35. Dossi N, Toniolo R, Pizzariello A, Impellizzieri F, Piccin E, Bontempelli G (2013) Pencil‐drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 2085–2091

    Google Scholar 

  36. Oliveira VXG, Dias AA, Carvalho LL, Cardoso TMG, Colmati F, Coltro WKT (2018) Determination of ascorbic acid in commercial tablets using pencil drawn electrochemical paper-based analytical devices. Anal Sciencesiences 34:91–95

    Article  CAS  Google Scholar 

  37. Dias AA, Cardoso TMG, Chagas CLS, Oliveira VXG, Munoz RAA, Henry CS, Santana MHP, Paixão TRLC, Coltro WKT (2018) Detection of analgesics and sedation drugs in whiskey using electrochemical paper-based analytical devices. Electroanalysis 30:2250–2257. https://doi.org/10.1002/elan.201800308

    Article  CAS  Google Scholar 

  38. Chagas CLS, Costa Duarte L, Lobo-Júnior EO, Piccin E, Dossi N, Coltro WKT (2015) Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis 36:1837–1844. https://doi.org/10.1002/elps.201500110

    Article  CAS  Google Scholar 

  39. Dossi N, Toniolo R, Pizzariello A, Impellizzieri F, Piccin E, Bontempelli G (2013) Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 34:2085–2091. https://doi.org/10.1002/elps.201200425

    Article  CAS  Google Scholar 

  40. Koga H, Nagashima K, Huang Y, Zhang G, Wang C, Takahashi T, Inoue A, Yan H, Kanai M, He Y, Uetani K, Nogi M, Yanagida T (2019) Paper-based disposable molecular sensor constructed from oxide nanowires, cellulose nanofibers, and pencil-drawn electrodes. ACS Appl Mater Interfaces 11:15044–15050. https://doi.org/10.1021/acsami.9b01287

    Article  CAS  Google Scholar 

  41. Kanaparthi S (2017) Pencil-drawn paper-based non-invasive and wearable capacitive respiration sensor. Electroanalysis 29:2680–2684. https://doi.org/10.1002/elan.201700438

    Article  CAS  Google Scholar 

  42. Orzari LO, de Araujo Andreotti IA, Bergamini MF, Marcolino LH, Janegitz BC (2018) Disposable electrode obtained by pencil drawing on corrugated fiberboard substrate. Sensors Actuators B: Chem 264:20–26. https://doi.org/10.1016/j.snb.2018.02.162

    Article  CAS  Google Scholar 

  43. Santhiago M, Strauss M, Pereira MP, Chagas AS, Bufon CCB (2017) Direct drawing method of graphite onto paper for high-performance flexible electrochemical sensors. ACS Appl Mater Interfaces 9:11959–11966. https://doi.org/10.1021/acsami.6b15646

    Article  CAS  Google Scholar 

  44. Kurra N, Kulkarni GU (2013) Pencil-on-paper: electronic devices. Lab Chip 13:2866–2873. https://doi.org/10.1039/c3lc50406a

    Article  CAS  Google Scholar 

  45. Foster CW, Brownson DAC, Ruas De Souza AP, Bernalte E, Iniesta J, Bertotti M, Banks CE (2016) Pencil it Pencil drawn electrochemical sensing platforms. Analyst 141:4055–4064. https://doi.org/10.1039/c6an00402d

    Article  CAS  Google Scholar 

  46. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. https://doi.org/10.1021/cm0630800

  47. Unwin PR, Güell AG, Zhang G (2016) Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Acc Chem Res 49:2041–2048. https://doi.org/10.1021/acs.accounts.6b00301

    Article  CAS  Google Scholar 

  48. de Ataide V, Arantes I, Mendes L, Baldo T, Rocha D, Paixão TRLC, Coltro WKT (2022) Review—a pencil drawing overview: from graphite to electrochemical sensors/biosensors applications. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ac68a0

    Article  Google Scholar 

  49. Rocha DS, Duarte LC, Silva-Neto HA, Chagas CLS, Santana P, Filho NRA, Coltro WKT (2021) Sandpaper-based electrochemical devices assembled on a reusable 3D-printed holder to detect date rape drug in beverages. Talanta. https://doi.org/10.1016/j.talanta.2021.122408

  50. Ataide VN, Ameku WA, Bacil RP, Angnes L, de Araujo WR, Paixão TRLC (2021) Enhanced performance of pencil-drawn paper-based electrodes by laser-scribing treatment. RSC Adv 11:1644–1653. https://doi.org/10.1039/d0ra08874a

    Article  CAS  Google Scholar 

  51. Dossi N, Petrazzi S, Toniolo R, Tubaro F, Terzi F, Piccin E, Svigelj R, Bontempelli G (2017) Digitally controlled procedure for assembling fully drawn paper-based electroanalytical platforms. Anal Chem 89:10454–10460. https://doi.org/10.1021/acs.analchem.7b02521

    Article  CAS  Google Scholar 

  52. Chagas CLS, de Souza FR, Cardoso TMG, Moreira RC, da Silva JAF, de Jesus DP, Coltro WKT (2016) A fully disposable paper-based electrophoresis microchip with integrated pencil-drawn electrodes for contactless conductivity detection. Anal Methods 8:6682–6686. https://doi.org/10.1039/c6ay01963c

    Article  CAS  Google Scholar 

  53. Damasceno S, Corrêa CC, Gouveia RF, Strauss M, César C, Bufon B, Santhiago M (2020) Delayed capillary flow of elastomers: an efficient method for fabrication and nanofunctionalization of flexible foldable, twistable, and stretchable electrodes from pyrolyzed paper. Adv Electron Mater 1900826:1–10. https://doi.org/10.1002/aelm.201900826

    Article  CAS  Google Scholar 

  54. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5–12. https://doi.org/10.1038/ncomms6714

    Article  CAS  Google Scholar 

  55. Zhang Z, Song M, Hao J, Wu K, Li C, Hu C (2018) Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon N Y 127:287–296. https://doi.org/10.1016/j.carbon.2017.11.014

    Article  CAS  Google Scholar 

  56. Tasić N, Bezerra Martins A, Yifei X, Sousa Góes M, Martín-Yerga D, Mao L, Paixão TRLC, Moreira Gonçalves L (2020) Insights into electrochemical behavior in laser-scribed electrochemical paper-based analytical devices. Electrochem Commun 121. https://doi.org/10.1016/j.elecom.2020.106872

  57. Tasić N, Sousa de Oliveira L, Paixão TRLC, Moreira Gonçalves L (2020) Laser‐pyrolysed paper electrodes for the square‐wave anodic stripping voltammetric detection of lead. Medical Devices Sensors 3. https://doi.org/10.1002/mds3.10115

  58. Bezerra Martins A, Lobato A, Tasić N, Perez-Sanz FJ, Vidinha P, Paixão TRLC, Moreira Gonçalves L (2019) Laser-pyrolyzed electrochemical paper-based analytical sensor for sulphite analysis. Electrochem Commun 107:106541. https://doi.org/10.1016/j.elecom.2019.106541

  59. Carvalhal RF, Kfouri MS, de Piazetta MHO, Gobbi AL, Kubota LT (2010) Electrochemical detection in a paper-based separation device. Anal Chem 82:1162–1165. https://doi.org/10.1021/ac902647r

    Article  CAS  Google Scholar 

  60. Pradela-Filho LA, Noviana E, Araújo DAG, Takeuchi RM, Santos AL, Henry CS (2020) Rapid analysis in continuous-flow electrochemical paper-based analytical devices. ACS Sensors. 5:274–281. https://doi.org/10.1021/acssensors.9b02298

    Article  CAS  Google Scholar 

  61. Arantes IVS, Paixão TRLC (2022) Couple batch-injection analysis and microfluidic paper-based analytical device: a simple and disposable alternative to conventional BIA apparatus. Talanta 240. https://doi.org/10.1016/j.talanta.2021.123201

  62. Wang Y, Luo J, Liu J, Li X, Kong Z, Jin H, Cai X (2018) Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. Biosens Bioelectron 107:47–53. https://doi.org/10.1016/j.bios.2018.02.012

    Article  CAS  Google Scholar 

  63. Chaiyo S, Mehmeti E, Siangproh W, Hoang TL, Nguyen HP, Chailapakul O, Kalcher K (2018) Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite. Biosens Bioelectron 102:113–120. https://doi.org/10.1016/j.bios.2017.11.015

    Article  CAS  Google Scholar 

  64. Fan Y, Shi S, Ma J, Guo Y (2019) A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens Bioelectron 135:1–7. https://doi.org/10.1016/j.bios.2019.03.063

    Article  CAS  Google Scholar 

  65. Caratelli V, Ciampaglia A, Guiducci J, Sancesario G, Moscone D, Arduini F (2020) Precision medicine in Alzheimer’s disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosens Bioelectron 165:112411. https://doi.org/10.1016/j.bios.2020.112411

    Article  CAS  Google Scholar 

  66. Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S (2021) Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron 176:112912. https://doi.org/10.1016/j.bios.2020.112912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES, CNPq (grants 307554/2020-1, 142412/2020-1 and 405620/2021-7), FAPESP (2019/16491-0, 2021/00205-8, 2018/08782-1), and INCTBio (grant 465389/2014-7) for the financial support and granted scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendell K. T. Coltro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva-Neto, H.A., Rocha, D.S., Pradela-Filho, L.A., Paixão, T.R.L.C., Coltro, W.K.T. (2023). (Bio)electrodes on Paper Platforms as Simple and Portable Analytical Tools for Bioanalytical Applications. In: Crespilho, F.N. (eds) Advances in Bioelectrochemistry Volume 5. Springer, Cham. https://doi.org/10.1007/978-3-031-10832-7_6

Download citation

Publish with us

Policies and ethics