Skip to main content

Intraoperative Neurophysiologic Monitoring and Mapping of the Motor System During Surgery for Supratentorial Lesions Under General Anesthesia

  • Chapter
  • First Online:
Koht, Sloan, Toleikis's Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals
  • 465 Accesses

Abstract

The resection of supratentorial tumors may be associated with functional morbidity, particularly when the lesions are located near blood vessels or near the eloquent cortices and tracts (e.g., the motor cortex). New postoperative functional deficits during tumor resections might be caused by different patterns of injury. During surgery involving the insula, deficits are frequently caused by ischemic insult rather than mechanical injuries of the fiber tracts. During surgery in the paracentral region and close to the posterior limb of the internal capsule, direct mechanical injury to the motor cortex (M1) and the corticospinal tract (CST) may be of major concern. Therefore, motor preservation requires both mapping of the M1 and the CST (cortical stimulation, somatosensory-evoked potential [SSEP] phase reversal, subcortical mapping techniques) and continuous monitoring by motor-evoked potential (MEP) recordings. Both techniques can be performed with the patient under general total intravenous anesthesia. Stable MEP recordings allow for safe completion of surgery, whereas MEP deterioration due to surgical causes should lead to early surgical intervention. Restoration of the MEP signals may prevent the occurrence of permanent new deficits. Subcortical mapping techniques may even allow estimating the distance to the CST, thus providing functional guidance during tumor resection. Other functions such as language, vision, somatosensory perception, and even cognitive functions may be mapped and monitored in awake procedures or by other neurophysiologic and imaging methods. The following chapter focuses on intraoperative neurophysiological methods to preserve the motor system during surgery of supratentorial surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article. J Neurosurg. 2011;114(3):566–73.

    Article  PubMed  Google Scholar 

  2. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):2559–65.

    Article  PubMed  Google Scholar 

  3. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2012;

    Google Scholar 

  4. Schucht P, Seidel K, Beck J, Murek M, Jilch A, Wiest R, et al. Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome. Neurosurg Focus. 2014;37(6):E16.

    Article  PubMed  Google Scholar 

  5. Landazuri P, Eccher M. Simultaneous direct cortical motor evoked potential monitoring and subcortical mapping for motor pathway preservation during brain tumor surgery: is it useful? J Clin Neurophysiol. 2013;30(6):623–5.

    Article  PubMed  Google Scholar 

  6. Neuloh G, Pechstein U, Schramm J. Motor tract monitoring during insular glioma surgery. J Neurosurg. 2007;106(4):582–92.

    Article  PubMed  Google Scholar 

  7. Sala F, Lanteri P. Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci. 2003;47(2):79–88.

    CAS  PubMed  Google Scholar 

  8. Bello L, Riva M, Fava E, Ferpozzi V, Castellano A, Raneri F, et al. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro-Oncology. 2014;16(8):1110–28.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014;120(5):1015–24.

    Article  PubMed  Google Scholar 

  10. Obermueller T, Schaeffner M, Shiban E, Droese D, Negwer C, Meyer B, et al. Intraoperative neuromonitoring for function-guided resection differs for supratentorial motor eloquent gliomas and metastases. BMC Neurol. 2015;15:211.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shiban E, Krieg SM, Obermueller T, Wostrack M, Meyer B, Ringel F. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg. 2015;123(2):301–6.

    Article  PubMed  Google Scholar 

  12. Krieg SM, Schaffner M, Shiban E, Droese D, Obermuller T, Gempt J, et al. Reliability of intraoperative neurophysiological monitoring using motor evoked potentials during resection of metastases in motor-eloquent brain regions: clinical article. J Neurosurg. 2013;118(6):1269–78.

    Article  PubMed  Google Scholar 

  13. Krieg SM, Shiban E, Droese D, Gempt J, Buchmann N, Pape H, et al. Predictive value and safety of intraoperative neurophysiological monitoring with motor evoked potentials in glioma surgery. Neurosurgery. 2012;70(5):1060–70. discussion 70-1

    Article  PubMed  Google Scholar 

  14. Neuloh G, Bien CG, Clusmann H, von Lehe M, Schramm J. Continuous motor monitoring enhances functional preservation and seizure-free outcome in surgery for intractable focal epilepsy. Acta Neurochir. 2010;152(8):1307–14.

    Article  PubMed  Google Scholar 

  15. Szelenyi A, Langer D, Kothbauer K, De Camargo AB, Flamm ES, Deletis V. Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg. 2006;105(5):675–81.

    Article  PubMed  Google Scholar 

  16. Szelenyi A, Langer D, Beck J, Raabe A, Flamm ES, Seifert V, et al. Transcranial and direct cortical stimulation for motor evoked potential monitoring in intracerebral aneurysm surgery. Clin Neurophysiol. 2007;37(6):391–8.

    Article  CAS  Google Scholar 

  17. Asimakidou E, Abut PA, Raabe A, Seidel K. Motor evoked potential warning criteria in supratentorial surgery: a scoping review. Cancers. 2021;13(11)

    Google Scholar 

  18. Yasargil MG, von Ammon K, Cavazos E, Doczi T, Reeves JD, Roth P. Tumours of the limbic and paralimbic systems. Acta Neurochir. 1992;118(1–2):40–52.

    Article  CAS  PubMed  Google Scholar 

  19. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  20. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  21. Lang FF, Olansen NE, DeMonte F, Gokaslan ZL, Holland EC, Kalhorn C, et al. Surgical resection of intrinsic insular tumors: complication avoidance. J Neurosurg. 2001;95(4):638–50.

    Article  CAS  PubMed  Google Scholar 

  22. Neuloh G, Simon M, Schramm J. Stroke prevention during surgery for deep-seated gliomas. Clin Neurophysiol. 2007;37(6):383–9.

    Article  CAS  Google Scholar 

  23. Kumabe T, Higano S, Takahashi S, Tominaga T. Ischemic complications associated with resection of opercular glioma. J Neurosurg. 2007;106(2):263–9.

    Article  PubMed  Google Scholar 

  24. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71(3):316–26.

    Article  CAS  PubMed  Google Scholar 

  25. Duffau H. Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Clin Neurophysiol. 2007;37(6):373–82.

    Article  CAS  Google Scholar 

  26. Szelenyi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus. 2010;28(2):E7.

    Article  PubMed  Google Scholar 

  27. Neuloh G. Time to revisit VEP monitoring? Acta Neurochir. 2010;152(4):649–50.

    Article  PubMed  Google Scholar 

  28. Luo Y, Regli L, Bozinov O, Sarnthein J. Correction: clinical utility and limitations of intraoperative monitoring of visual evoked potentials. PLoS One. 2015;10(7):e0133819.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 2012;117(3):466–73.

    Article  PubMed  Google Scholar 

  30. Deletis V. Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol. 1993;63:201–14.

    CAS  PubMed  Google Scholar 

  31. Deletis V, Camargo AB. Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery. 2001;49(6):1488–9.

    Article  CAS  PubMed  Google Scholar 

  32. Vigano L, Fornia L, Rossi M, Howells H, Leonetti A, Puglisi G, et al. Anatomo-functional characterisation of the human “hand-knob”: a direct electrophysiological study. Cortex. 2019;113:239–54.

    Article  PubMed  Google Scholar 

  33. Fornia L, Rossi M, Rabuffetti M, Leonetti A, Puglisi G, Vigano L, et al. Direct electrical stimulation of premotor areas: different effects on hand muscle activity during object manipulation. Cereb Cortex. 2020;30(1):391–405.

    Article  PubMed  Google Scholar 

  34. Romstock J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C. Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 2002;72(2):221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simon MV, Sheth SA, Eckhardt CA, Kilbride RD, Braver D, Williams Z, et al. Phase reversal technique decreases cortical stimulation time during motor mapping. J Clin Neurosci. 2014;21(6):1011–7.

    Article  PubMed  Google Scholar 

  36. Cedzich C, Taniguchi M, Schafer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38(5):962–70.

    Article  CAS  PubMed  Google Scholar 

  37. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013;118(2):287–96.

    Article  PubMed  Google Scholar 

  38. Neuloh G, Schramm J. Motor evoked potential monitoring for the surgery of brain tumours and vascular malformations. Adv Tech Stand Neurosurg. 2004;29:171–228.

    Article  CAS  PubMed  Google Scholar 

  39. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  40. Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery. 2004;54(5):1061–70. discussion 70-2

    Article  PubMed  Google Scholar 

  41. Kombos T, Suess O, Ciklatekerlio O, Brock M. Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg. 2001;95(4):608–14.

    Article  CAS  PubMed  Google Scholar 

  42. Szelenyi A, Senft C, Jardan M, Forster MT, Franz K, Seifert V, et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol. 2011;122(7):1470–5.

    Article  CAS  PubMed  Google Scholar 

  43. Kamada K, Todo T, Ota T, Ino K, Masutani Y, Aoki S, et al. The motor-evoked potential threshold evaluated by tractography and electrical stimulation. J Neurosurg. 2009;

    Google Scholar 

  44. Maesawa S, Fujii M, Nakahara N, Watanabe T, Wakabayashi T, Yoshida J. Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg. 2010;74(1):153–61.

    Article  PubMed  Google Scholar 

  45. Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg. 2011;114(3):738–46.

    Article  PubMed  Google Scholar 

  46. Prabhu SS, Gasco J, Tummala S, Weinberg JS, Rao G. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. J Neurosurg. 2011;114(3):719–26.

    Article  PubMed  Google Scholar 

  47. Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery. 2012;70(2):283–93. discussion 94

    Article  PubMed  Google Scholar 

  48. Shiban E, Krieg SM, Haller B, Buchmann N, Obermueller T, Boeckh-Behrens T, et al. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg. 2015;123(3):711–20.

    Article  PubMed  Google Scholar 

  49. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. Low-threshold monopolar motor mapping for resection of primary motor cortex tumors. Neurosurgery. 2012;71(1 Suppl Operative):104–14.

    PubMed  Google Scholar 

  50. Plans G, Fernandez-Conejero I, Rifa-Ros X, Fernandez-Coello A, Rossello A, Gabarros A. Evaluation of the high-frequency monopolar stimulation technique for mapping and monitoring the corticospinal tract in patients with Supratentorial gliomas. A proposal for intraoperative management based on neurophysiological data analysis in a series of 92 patients. Neurosurgery. 2017;81(4):585–94.

    Article  PubMed  Google Scholar 

  51. Sanmillan JL, Fernandez-Coello A, Fernandez-Conejero I, Plans G, Gabarros A. Functional approach using intraoperative brain mapping and neurophysiological monitoring for the surgical treatment of brain metastases in the central region. J Neurosurg. 2017;126(3):698–707.

    Article  PubMed  Google Scholar 

  52. Kombos T, Suss O, Vajkoczy P. Subcortical mapping and monitoring during insular tumor surgery. Neurosurg Focus. 2009;27(4):E5.

    Article  PubMed  Google Scholar 

  53. Mikuni N, Okada T, Nishida N, Taki J, Enatsu R, Ikeda A, et al. Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg. 2007;106(1):128–33.

    Article  PubMed  Google Scholar 

  54. Moiyadi A, Velayutham P, Shetty P, Seidel K, Janu A, Madhugiri V, et al. Combined motor evoked potential monitoring and subcortical dynamic mapping in motor eloquent tumors allows safer and extended resections. World Neurosurg. 2018;

    Google Scholar 

  55. Seidel K, Schucht P, Beck J, Raabe A. Continuous dynamic mapping to identify the corticospinal tract in motor eloquent brain tumors: an update. J Neurol Surg A Central Eur Neurosurg. 2020;81(2):105–10.

    Article  Google Scholar 

  56. Roth J, Korn A, Bitan-Talmor Y, Kaufman R, Ekstein M, Constantini S. Subcortical mapping using an electrified Cavitron UltraSonic aspirator in pediatric Supratentorial surgery. World Neurosurg. 2017;101:357–64.

    Article  PubMed  Google Scholar 

  57. Carrabba G, Mandonnet E, Fava E, Capelle L, Gaini SM, Duffau H, et al. Transient inhibition of motor function induced by the Cavitron ultrasonic surgical aspirator during brain mapping. Neurosurgery. 2008;63(1):E178–9. discussion E9

    Article  PubMed  Google Scholar 

  58. Gempt J, Krieg SM, Huttinger S, Buchmann N, Ryang YM, Shiban E, et al. Postoperative ischemic changes after glioma resection identified by diffusion-weighted magnetic resonance imaging and their association with intraoperative motor evoked potentials. J Neurosurg. 2013;119(4):829–36.

    Article  PubMed  Google Scholar 

  59. Szelenyi A, Hattingen E, Weidauer S, Seifert V, Ziemann U. Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery. 2010;67(2):302–13.

    Article  PubMed  Google Scholar 

  60. Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery. 2007;61(1 Suppl):337–46; discussion 46–8.

    PubMed  Google Scholar 

  61. Ottenhausen M, Krieg SM, Meyer B, Ringel F. Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurgical Focus. 2015;38(1):E3.

    Article  PubMed  Google Scholar 

  62. Seidel K, Raabe A. Cortical and subcortical brain mapping. In: Deletis V, Shils JL, Sala S, Seidel K, editors. Neurophysiology in neurosurgery. 2nd ed. Cambridge, MA: Academic Press/Elsevier; 2020. p. 121–35. ISBN 9780128150009. https://doi.org/10.1016/B978-0-12-815000-9.00009-5.

    Chapter  Google Scholar 

Download references

Acknowledgement

We would like to acknowledge Antoun Koht and Matthew C. Tate who contributed to the previous version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Seidel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neuloh, G., Seidel, K. (2023). Intraoperative Neurophysiologic Monitoring and Mapping of the Motor System During Surgery for Supratentorial Lesions Under General Anesthesia. In: Seubert, C.N., Balzer, J.R. (eds) Koht, Sloan, Toleikis's Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-031-09719-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09719-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09718-8

  • Online ISBN: 978-3-031-09719-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics