Skip to main content

Classifying Changes in Motion Behaviour Due to a Hospital Stay Using Floor Sensor Data – A Single Case Study

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1429))

Included in the following conference series:

Abstract

In this paper we discuss methods to classify behavioural differences of individuals before and after a hospital stay, which can be detected using only data recorded with a sensor floor. The used sensor floor offers the possibility of recording the movement behaviour of individuals as inconspicuously as possible because it is laid under the normal floor covering. The aspect of unobtrusive monitoring promises a versatile use, especially in nursing, which benefits both medical staff and patients. A Multi-Layer Perceptron (MLP), a Support Vector Machine (SVM), a Gaussian Naive Bayes (GNB) and a Random Decision Forest (RDF) were used to classify the data. The results of the methods are represented with the metrics Accuracy, F1-Score, Precision, Recall/Sensitivity and Specificity. For MLP, SVM and RDF the results are very good and show that behavioural changes can be detected using only data recorded by a sensor floor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://future-shape.com

  2. Home & smart (2021). https://www.homeandsmart.de/ambient-assisted-living-aal

  3. Aran, O., Sanchez-Cortes, D., Do, M.-T., Gatica-Perez, D.: Anomaly detection in elderly daily behavior in ambient sensing environments. In: Chetouani, M., Cohn, J., Salah, A.A. (eds.) HBU 2016. LNCS, vol. 9997, pp. 51–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46843-3_4

    Chapter  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Cook, D.J., Thompson, J.E., Prinsen, S.K., Dearani, J.A., Deschamps, C.: Functional recovery in the elderly after major surgery: assessment of mobility recovery using wireless technology. Ann. Thorac. Surg. 96(3), 1057–1061 (2013). https://doi.org/10.1016/j.athoracsur.2013.05.092

    Article  Google Scholar 

  6. Durgesh, K.S., Lekha, B.: Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 12(1), 1–7 (2010)

    Google Scholar 

  7. Hoffmann, R., Brodowski, H., Steinhage, A., Grzegorzek, M.: Detecting walking challenges in gait patterns using a capacitive sensor floor and recurrent neural networks. Sensors 21(4), 1086 (2021)

    Article  Google Scholar 

  8. Lauterbach, C., Steinhage, A., Techmer, A., Sousa, M., Hoffmann, R.: AAL functions for home care and security: a sensor floor supports residents and carers. Curr. Dir. Biomed. Eng. 4(1), 127–129 (2018)

    Article  Google Scholar 

  9. Murphy, K.P., et al.: Naive Bayes classifiers. Univ. Br. Columbia 18(60) (2006)

    Google Scholar 

  10. Noriega, L.: Multilayer perceptron tutorial. School of Computing, Staffordshire University (2005)

    Google Scholar 

  11. Palleschi, L., et al.: Functional recovery of elderly patients hospitalized in geriatric and general medicine units. The PROgetto DImissioni in GEriatria study: in-hospital functional recovery in older adults. J. Am. Geriatr. Soc. 59(2), 193–199 (2011). https://doi.org/10.1111/j.1532-5415.2010.03239.x

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 616–623 (2003)

    Google Scholar 

  14. Santos, R., Rupp, M., Bonzi, S., Fileti, A.: Comparison between multilayer feedforward neural networks and a radial basis function network to detect and locate leaks in pipelines transporting gas. Chem. Eng. Trans. 32, 1375–1380 (2013)

    Google Scholar 

  15. Steinhage, A., Lauterbach, C.: SensFloor® and NaviFloor®: robotics applications for a large-area sensor system. Int. J. Intell. Mechatron. Robot. (IJIMR) 3(3), 43–59 (2013)

    Google Scholar 

  16. Theodoridis, S., Koutroumbas, K.: Chapter 2 - classifiers based on Bayes decision theory. In: Theodoridis, S., Koutroumbas, K. (eds.) Pattern Recognition, 4th edn, pp. 13–89. Academic Press, Boston (2009). https://doi.org/10.1016/B978-1-59749-272-0.50004-9, https://www.sciencedirect.com/science/article/pii/B9781597492720500049

  17. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Cham (1999). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  18. Veronese, F., Masciadri, A., Comai, S., Matteucci, M., Salice, F.: Behavior drift detection based on anomalies identification in home living quantitative indicators. Technologies 6(1), 16 (2018). https://doi.org/10.3390/technologies6010016

    Article  Google Scholar 

  19. Verstaevel, N., Georgé, J.P., Bernon, C., Gleizes, M.P.: A self-organized learning model for anomalies detection: application to elderly people. In: 2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 70–79 (2018). https://doi.org/10.1109/SASO.2018.00018

  20. Zhang, H.: Exploring conditions for the optimality of Naive Bayes. Int. J. Pattern Recogn. Artif. Intell. 19(02), 183–198 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

This project was funded in parts by the Christl-Lauterbach-Stiftung. We thank Anika Fischer and Markus Eiba for their work in the data collection process at the senior residence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Liebenow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liebenow, L., Walter, J., Hoffmann, R., Steinhage, A., Grzegorzek, M. (2022). Classifying Changes in Motion Behaviour Due to a Hospital Stay Using Floor Sensor Data – A Single Case Study. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_1

Download citation

Publish with us

Policies and ethics